Câu hỏi:
30/06/2023 4,122Cho hình chữ nhật ABCD có AB = 4 cm, BC = 3 cm. Kẻ BH vuông góc với AC tại H, tia BH cắt AD ở E.
1) Tính AC, BH, \(\widehat {BAC}\).
2) Chứng minh BH.BE = CD2.
3) Kẻ EF vuông góc với BC tại F. Chứng minh .
4) Tính diện tích tam giác BHF.
Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:
1) Tam giác ABC vuông tại B (do ABCD là hình chữ nhật) có BH là đường cao:
⦁ AC2 = AB2 + BC2 (Định lí Pythagore).
= 42 + 32 = 25.
Suy ra AC = 5 (cm).
⦁ \(\frac{1}{{B{H^2}}} = \frac{1}{{A{B^2}}} + \frac{1}{{A{C^2}}}\) (Hệ thức lượng trong tam giác vuông).
\( = \frac{1}{{{4^2}}} + \frac{1}{{{3^2}}} = \frac{{25}}{{144}}\).
Suy ra \(B{H^2} = \frac{{144}}{{25}}\).
Khi đó \(BH = \frac{{12}}{5}\) (cm).
⦁ \(\tan \widehat {BAC} = \frac{{BC}}{{AB}} = \frac{3}{4}\). Suy ra \(\widehat {BAC} \approx 36^\circ 52'\).
Vậy AC = 5 cm; \(BH = \frac{{12}}{5}\) cm và \(\widehat {BAC} \approx 36^\circ 52'\).
2) Ta có AB = CD (do ABCD là hình chữ nhật).
Tam giác ABE vuông tại A có AH là đường cao:
AB2 = BH.BE (Hệ thức lượng trong tam giác vuông).
Vậy BH.BE = CD2 (điều phải chứng minh).
3) Xét ∆BHC và ∆BFE, có:
\(\widehat {HBC}\) chung;
\(\widehat {BHC} = \widehat {BFE} = 90^\circ \).
Do đó (g.g).
Suy ra \(\frac{{BH}}{{BF}} = \frac{{BC}}{{BE}}\).
Xét ∆BHF và ∆BCE, có:
\(\widehat {HBC}\) chung;
\(\frac{{BH}}{{BC}} = \frac{{BF}}{{BE}}\) (do \(\frac{{BH}}{{BF}} = \frac{{BC}}{{BE}}\)).
Vậy (c.g.c).
4) Ta có CDEF là hình chữ nhật (do \(\widehat {CDE} = \widehat {DCF} = \widehat {CFE} = 90^\circ \)).
Suy ra EF = CD = AB = 4 (cm).
Vì \(\frac{{BH}}{{BF}} = \frac{{BC}}{{BE}}\) nên BC.BF = BH.BE = CD2 = AB2 = 16 (cm).
Suy ra \(BF = \frac{{16}}{{BC}} = \frac{{16}}{3}\) (cm).
Khi đó \({S_{\Delta BFE}} = \frac{1}{2}BF.EF = \frac{1}{2}.\frac{{16}}{3}.4 = \frac{{32}}{3}\) (cm2).
Tam giác BFE vuông tại F: BE2 = BF2 + EF2 (Định lí Pythagore).
Suy ra \[BE = \sqrt {B{F^2} + E{F^2}} = \sqrt {{{\left( {\frac{{16}}{3}} \right)}^2} + {4^2}} = \frac{{20}}{3}\] (cm).
Ta thấy tam giác BEF và tam giác BHF có chung đường cao hạ từ điểm F.
Suy ra \(\frac{{{S_{\Delta BHF}}}}{{{S_{\Delta BEF}}}} = \frac{{BH}}{{BE}} = \frac{{12}}{5}:\frac{{20}}{3} = \frac{9}{{25}}\).
Vậy \({S_{\Delta BHF}} = \frac{9}{{25}}.{S_{\Delta BEF}} = \frac{9}{{25}}.\frac{{32}}{3} = \frac{{96}}{{25}}\) (cm2).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình bình hành ABCD có \(\widehat A = 120^\circ \). Tia phân giác của \(\widehat D\) qua trung điểm I của AB. Kẻ AH vuông góc với DC. Chứng minh rằng:
a) AB = 2AD.
b) DI = 2AH.
c) AC vuông góc với AD.
Câu 2:
Cho \(\cos a = \frac{4}{5}\) và 0° < a < 90°. Tính sina, tana, cota.
Câu 3:
Trong vườn có 12 cây cam và 28 cây chanh. Tìm tỉ số phần trăm số cây cam so với tổng số cây trong vườn.
Câu 4:
Cho (O; R), đường kính AB và một điểm M nằm trên (O; R) với MA < MB (M khác A và B). Tiếp tuyến tại M của (O; R) cắt tiếp tuyến tại A, B của (O; R) lần lượt tại C và D.
a) Chứng minh rằng ABDC là hình thang vuông.
b) AD cắt (O; R) tại E, OD cắt MB tại N. Chứng minh rằng OD vuông góc với MB và DE.DA = DN.DO.
c) Đường thẳng vuông góc với AB tại O cắt đường thẳng AM tại F. Chứng tỏ OFDB là hình chữ nhật.
d) AM = R. Tính diện tích tứ giác ACDB theo R.
Câu 5:
Tìm a, b, c để đồ thị hàm số y = ax2 + bx + c là đường parabol có đỉnh I(3; 4), cắt trục hoành tại điểm có hoành độ bằng –1.
Câu 6:
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật. Tam giác SAB nằm trong mặt phẳng vuông góc với mặt phẳng (ABCD). Biết rằng AB = a, \(AD = a\sqrt 3 \) và \(\widehat {ASB} = 60^\circ \). Tính diện tích khối cầu ngoại tiếp hình chóp S.ABCD.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
62 câu Trắc nghiệm Khái niệm về khối đa diện (nhận biết)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
80 câu Bài tập Hình học Khối đa diện có lời giải chi tiết (P1)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận
Anh Hoang
20:27 - 03/11/2023
"chung đường cao hạ từ điểm F " em vẫn ko hiểu đoạn này ạ