Câu hỏi:
11/07/2024 1,438Cho tam giác ABC vuông tại A có AB < AC. Vẽ AD là tia phân giác của góc BAC (D ∈ BC). Trên AC lấy điểm E sao cho AE = AB.
a) Chứng minh \(\widehat {ABD} = \widehat {AED}\).
b) Tia ED cắt AB tại F. Chứng minh AC = AF.
c) Gọi G là trung điểm của DF; AD cắt CF tại H và cắt CG tại I. Chứng minh DI = 2IH.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a) Xét \(\Delta ABD\) và \(\Delta EAD\) có:
AB = AE
\(\widehat {BAD} = \widehat {EAD}\) (do AD là tia phân giác của góc BAC)
AD là cạnh chung
Do đó \(\Delta ABD = \Delta AED\left( {c.g.c} \right)\)
Suy ra \(\widehat {ABD} = \widehat {AED}\) (2 góc tương ứng)
b) Xét \(\Delta ABC\) và \(\Delta AEF\) có:
\(\widehat {FAC}\) là góc chung
AB = AE
\(\widehat {ABC} = \widehat {AEF}\) (do \(\widehat {ABD} = \widehat {AED}\))
Do đó \(\Delta ABC = \Delta AEF\left( {g.c.g} \right)\)
Suy ra AC = AF (hai cạnh tương ứng)
c) Xét \(\Delta AHF\) và \(\Delta AHC\) có:
AH là cạnh chung
\(\widehat {FAH} = \widehat {CAH}\) (do AD là tia phân giác của góc BAC)
AF = AC (cmt)
Do đó \(\Delta AHF = \Delta AHC\left( {c.g.c} \right)\)
Suy ra HF = HC (hai cạnh tương ứng)
Khi đó H là trung điểm của FC nên DH là đường trung tuyến xuất phát từ đỉnh D của \(\Delta DFC.\)
Xét \(\Delta DFC\) có CG và DH là hai đường trung tuyến, CG và DH cắt nhau tại I
Suy ra I là trọng tâm của tam giác DFC.
Do đó \(IH = \frac{1}{2}ID\) (tính chất trọng tâm của tam giác)
Hay DI = 2IH.
Vậy DI = 2IH.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC có đường cao AI. Từ A kẻ tia Ax vuông góc AC, từ B kẻ tia By song song AC. Gọi M là giao điểm của tia Ax và tia By. Nối M với trung điểm P của AB, đường thẳng MP cắt AC tại Q và đường thẳng BQ cắt AI tại H.
a) Tứ giác AMBQ là hình gì?
b) Chứng minh CH vuông góc AB.
c) Chứng minh tam giác PIQ cân.
Câu 2:
Cho a là góc tù và \(\sin a = \frac{4}{5}\). Tính A = 2sina – cosa.
Câu 3:
Tổng tất cả các giá trị thực của tham số m để hàm số y = 3x3 + 2(m + 1)x2 – 3mx + m – 5 có hai điểm cực trị x1, x2 đồng thời y(x1).y(x2) = 0 là
Câu 4:
Tìm điểm cố định mà đường thẳng y = (m – 2)x + 3 luôn đi qua với mọi giá trị của m.
Câu 5:
Tìm tập hợp tất cả các giá trị của tham số m để hàm số:
\(y = f\left( x \right) = \sqrt {{x^2} - 3mx + 4} \) có tập xác định là D = ℝ.
Câu 6:
Xác định hàm số bậc hai y = 2x2 + bx + c biết đồ thị của nó có đỉnh I(−1; −2).
Câu 7:
Xác định hàm số bậc hai y = ax2 + bx + c biết đồ thị của nó có đỉnh I(1; −1) và đi qua điểm A(2; 0)
về câu hỏi!