Câu hỏi:
11/07/2024 1,750Cho tam giác ABC vuông tại A có AB < AC. Vẽ AD là tia phân giác của góc BAC (D ∈ BC). Trên AC lấy điểm E sao cho AE = AB.
a) Chứng minh \(\widehat {ABD} = \widehat {AED}\).
b) Tia ED cắt AB tại F. Chứng minh AC = AF.
c) Gọi G là trung điểm của DF; AD cắt CF tại H và cắt CG tại I. Chứng minh DI = 2IH.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a) Xét \(\Delta ABD\) và \(\Delta EAD\) có:
AB = AE
\(\widehat {BAD} = \widehat {EAD}\) (do AD là tia phân giác của góc BAC)
AD là cạnh chung
Do đó \(\Delta ABD = \Delta AED\left( {c.g.c} \right)\)
Suy ra \(\widehat {ABD} = \widehat {AED}\) (2 góc tương ứng)
b) Xét \(\Delta ABC\) và \(\Delta AEF\) có:
\(\widehat {FAC}\) là góc chung
AB = AE
\(\widehat {ABC} = \widehat {AEF}\) (do \(\widehat {ABD} = \widehat {AED}\))
Do đó \(\Delta ABC = \Delta AEF\left( {g.c.g} \right)\)
Suy ra AC = AF (hai cạnh tương ứng)
c) Xét \(\Delta AHF\) và \(\Delta AHC\) có:
AH là cạnh chung
\(\widehat {FAH} = \widehat {CAH}\) (do AD là tia phân giác của góc BAC)
AF = AC (cmt)
Do đó \(\Delta AHF = \Delta AHC\left( {c.g.c} \right)\)
Suy ra HF = HC (hai cạnh tương ứng)
Khi đó H là trung điểm của FC nên DH là đường trung tuyến xuất phát từ đỉnh D của \(\Delta DFC.\)
Xét \(\Delta DFC\) có CG và DH là hai đường trung tuyến, CG và DH cắt nhau tại I
Suy ra I là trọng tâm của tam giác DFC.
Do đó \(IH = \frac{1}{2}ID\) (tính chất trọng tâm của tam giác)
Hay DI = 2IH.
Vậy DI = 2IH.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC có đường cao AI. Từ A kẻ tia Ax vuông góc AC, từ B kẻ tia By song song AC. Gọi M là giao điểm của tia Ax và tia By. Nối M với trung điểm P của AB, đường thẳng MP cắt AC tại Q và đường thẳng BQ cắt AI tại H.
a) Tứ giác AMBQ là hình gì?
b) Chứng minh CH vuông góc AB.
c) Chứng minh tam giác PIQ cân.
Câu 2:
Cho a là góc tù và \(\sin a = \frac{4}{5}\). Tính A = 2sina – cosa.
Câu 3:
Tổng tất cả các giá trị thực của tham số m để hàm số y = 3x3 + 2(m + 1)x2 – 3mx + m – 5 có hai điểm cực trị x1, x2 đồng thời y(x1).y(x2) = 0 là
Câu 4:
Tìm tập hợp tất cả các giá trị của tham số m để hàm số:
\(y = f\left( x \right) = \sqrt {{x^2} - 3mx + 4} \) có tập xác định là D = ℝ.
Câu 5:
Tìm điểm cố định mà đường thẳng y = (m – 2)x + 3 luôn đi qua với mọi giá trị của m.
Câu 6:
Xác định hàm số bậc hai y = 2x2 + bx + c biết đồ thị của nó có đỉnh I(−1; −2).
Câu 7:
Cho tam giác ABC đều cạnh a. Gọi M, N là các điểm sao cho \(3\overrightarrow {BM} = 2\overrightarrow {BC} ,5\overrightarrow {AN} = 4\overrightarrow {AC} .\)
a) Tính \(\overrightarrow {AB} .\overrightarrow {AC} ,\,\,\overrightarrow {BC} .\overrightarrow {AC} .\)
b) Chứng minh AM vuông góc với BN.
53 câu Bài tập về Tính đơn điệu của hàm số có lời giải (P1)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
200 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát hàm số nâng cao (P1)
120 câu Bài tập Cực trị hàm số cơ bản, nâng cao có lời giải (P1)
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
250 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát hàm số cơ bản (P1)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
về câu hỏi!