Câu hỏi:
03/07/2023 7,784Tổng tất cả các giá trị thực của tham số m để hàm số y = 3x3 + 2(m + 1)x2 – 3mx + m – 5 có hai điểm cực trị x1, x2 đồng thời y(x1).y(x2) = 0 là
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: D.
Hàm số y = 3x3 + 2(m + 1)x2 – 3mx + m – 5 có 2 điểm cực trị đồng thời y(x1).y(x2) = 0 khi và chỉ khi phương trình 3x3 + 2(m + 1)x2 – 3mx + m – 5 = 0 (1) có đúng 2 nghiệm phân biệt.
Ta có: 3x3 + 2(m + 1)x2 – 3mx + m – 5 = 0
⇔ (x – 1)[3x2 + (2m + 5)x + 5 – m] = 0
⇔ \[\left[ \begin{array}{l}x = 1\\3{x^2} + (2m + 5)x + 5 - m = 0(*)\end{array} \right.\]
(1) có đúng 2 nghiệm phân biệt khi và chỉ khi:
TH1: (*) có nghiệm kép khác 1.
\( \Rightarrow \left\{ \begin{array}{l}\Delta = {\left( {2m + 5} \right)^2} - 12\left( {5 - m} \right) = 0\\3 + 2m + 5 + 5 - m \ne 0\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}4{m^2} + 32m - 35 = 0\\m \ne - 13\end{array} \right. \Leftrightarrow m = \frac{{ - 8 \pm 3\sqrt {11} }}{2}\)
TH2: (*) có 2 nghiệm phân biệt trong đó có 1 nghiệm x = 1.
\( \Rightarrow \left\{ \begin{array}{l}\Delta = {\left( {2m + 5} \right)^2} - 12\left( {5 - m} \right)\\3 + 2m + 5 + 5 - m = 0\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}4{m^2} + 32m - 35 > 0\\m = - 13\end{array} \right.\)
⇔ m = −13
Vậy có 3 giá trị m thỏa mãn. Khi đó tổng của các giá trị m là:
\(\frac{{ - 8 + 3\sqrt {11} }}{2} + \frac{{ - 8 - 3\sqrt {11} }}{2} - 13 = - 21\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC có đường cao AI. Từ A kẻ tia Ax vuông góc AC, từ B kẻ tia By song song AC. Gọi M là giao điểm của tia Ax và tia By. Nối M với trung điểm P của AB, đường thẳng MP cắt AC tại Q và đường thẳng BQ cắt AI tại H.
a) Tứ giác AMBQ là hình gì?
b) Chứng minh CH vuông góc AB.
c) Chứng minh tam giác PIQ cân.
Câu 2:
Cho a là góc tù và \(\sin a = \frac{4}{5}\). Tính A = 2sina – cosa.
Câu 3:
Tìm điểm cố định mà đường thẳng y = (m – 2)x + 3 luôn đi qua với mọi giá trị của m.
Câu 4:
Tìm tập hợp tất cả các giá trị của tham số m để hàm số:
\(y = f\left( x \right) = \sqrt {{x^2} - 3mx + 4} \) có tập xác định là D = ℝ.
Câu 5:
Xác định hàm số bậc hai y = 2x2 + bx + c biết đồ thị của nó có đỉnh I(−1; −2).
Câu 6:
Xác định hàm số bậc hai y = ax2 + bx + c biết đồ thị của nó có đỉnh I(1; −1) và đi qua điểm A(2; 0)
về câu hỏi!