Câu hỏi:

04/07/2023 891

Cho tam giác ABC vuông ở A, đường cao AH. Kẻ HD vuông góc với AB và HE vuông góc với AC (D trên AB, E trên AC). Gọi O là giao điểm của AH và DE. Gọi P và Q lần lượt là trung điểm của BH và HC. Chứng minh tứ giác DEQP là hình thang vuông.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác ABC vuông ở A, đường cao AH. Kẻ HD vuông góc với AB và HE  (ảnh 1)

HD AB và AC AB

Þ HD // AC

\[ \Rightarrow \widehat {PHD} = \widehat {HCA}\](đồng vị)

ΔDBH vuông tại D có DP là trung tuyến ứng với cạnh huyền

DP = PH ΔDPH cân tại P

\[ \Rightarrow \widehat {PHD} = \widehat {PDH}\]

ADHE là hình chữ nhật 

\[ \Rightarrow \widehat {ADE} = \widehat {AHE}\]

\[\widehat {HCA} = \widehat {AHE}\](cùng phụ với \[\widehat {AHE}\])

\[ \Rightarrow \widehat {ADE} = \widehat {HCA} = \widehat {PHD} = \widehat {PDH}\]

Ta có: \[\widehat {ADE} + \widehat {EDH} = 90^\circ \]

\[\widehat {PHD} + \widehat {EDH} = 90^\circ \]

\[ \Rightarrow \widehat {PDE} = 90^\circ \]

DP DE

Chứng minh tương tự ta có EQ DE

Tứ giác DEQP là hình thang vuông tại D và E (đpcm)

Vậy tứ giác DEQP là hình thang vuông tại D và E.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi q(x); g(x) lần lượt là thương của phép chia f(x) cho x – 2; f(x) cho x2 – 1

Þ f(x) = q(x)(x– 2)

Và f(x) = g(x)(x2 – 1) + 2x

Þ f(2) = 8 + 4a + 2b + c = 0

f(1) = 1 + a + b + c = 2

f(–1) = – 1 + a – b + c = –2

Từ các hệ thức trên ta tìm được: 

\[a = \frac{{10}}{3}\]; b = 1; \[c = \frac{{10}}{3}\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP