Câu hỏi:

04/07/2023 252

Cho tam giác ABC. Trên tia đối của tia AB lấy D sao cho AD = AC. Trên tia đối của AC lấy E sao cho AE = AB. Gọi M và N lần lượt là trung điểm của BE và CD. Chứng minh ΔMAC = ΔNAE.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác ABC. Trên tia đối của tia AB lấy D sao cho AD = AC. Trên tia đối  (ảnh 1)

Xét ΔABC và ΔADE có:

AB = AD (gt)

\[\widehat {BAC} = \widehat {DAE}\] (2 góc đối đỉnh)

AC = AE (gt)

Do đó: ΔABC = ΔADE (c.g.c)

\[ \Rightarrow \widehat {MAN} = \widehat {CAE} = 180^\circ \]

Xét ΔMAC và ΔNAE có:

AC = AE (gt)

\[\widehat C = \widehat E\]

CM = EN

Þ ΔMAC = ΔNAE (c.g.c)

Vậy ΔMAC = ΔNAE.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi q(x); g(x) lần lượt là thương của phép chia f(x) cho x – 2; f(x) cho x2 – 1

Þ f(x) = q(x)(x– 2)

Và f(x) = g(x)(x2 – 1) + 2x

Þ f(2) = 8 + 4a + 2b + c = 0

f(1) = 1 + a + b + c = 2

f(–1) = – 1 + a – b + c = –2

Từ các hệ thức trên ta tìm được: 

\[a = \frac{{10}}{3}\]; b = 1; \[c = \frac{{10}}{3}\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP