Câu hỏi:

04/07/2023 296

Cho đường tròn (O; R), đường kính AB và tiếp tuyến Ax. Từ điểm C thuộc Ax, kẻ tiếp tuyến thứ hai CD với đường tròn (O) (D là tiếp điểm). Gọi giao điểm của CO và AD là I. Chứng minh: CO  AD.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho đường tròn (O; R), đường kính AB và tiếp tuyến Ax. Từ điểm C thuộc Ax, kẻ tiếp (ảnh 1)

Ta có CA, CD là hai tiếp tuyến của (O) cắt nhau tại C.

Suy ra CA = CD.

Khi đó C nằm trên đường trung trực của đoạn thẳng AD   (1)

Lại có OA = OD = R.

Suy ra O nằm trên đường trung trực của đoạn thẳng AD   (2)

Từ (1), (2), suy ra CO là đường trung trực của đoạn thẳng AD.

Vậy CO  AD tại I.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi q(x); g(x) lần lượt là thương của phép chia f(x) cho x – 2; f(x) cho x2 – 1

Þ f(x) = q(x)(x– 2)

Và f(x) = g(x)(x2 – 1) + 2x

Þ f(2) = 8 + 4a + 2b + c = 0

f(1) = 1 + a + b + c = 2

f(–1) = – 1 + a – b + c = –2

Từ các hệ thức trên ta tìm được: 

\[a = \frac{{10}}{3}\]; b = 1; \[c = \frac{{10}}{3}\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP