Câu hỏi:

04/07/2023 247

Giải phương trình: \[{x^2} + 6x + 1 = (2x + 1)\sqrt {{x^2} + 2x + 3} \].

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Điều kiện: x2 + 2x + 3 ≥ 0

\[{x^2} + 6x + 1 = (2x + 1)\sqrt {{x^2} + 2x + 3} \]

\[ \Leftrightarrow {x^2} + 2x + 3 + 4x + 2 = (2x + 1)\sqrt {{x^2} + 2x + 3} \]

Đặt \[a = \sqrt {{x^2} + 2x + 3} \]; b = 2x +1, phương trình trở thành:

a2 + 2b = ab + 4

a2 − 4− ab + 2b = 0

(a − 2)(a + 2) − b(a − 2) = 0

(a − 2)(a – b + 2) = 0

\[ \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{a = 2\,\,\,\,\,\,\,\,\,\,\,}\\{a - b = - 2}\end{array}} \right.\].

Với a = 2 \[ \Leftrightarrow \sqrt {{x^2} + 2x + 3} = 2\]

Û x2 + 2x – 1 = 0

\[ \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \sqrt 2 - 1\,\,(tm)}\\{x = - \sqrt 2 - 1\,\,(tm)}\end{array}} \right.\]

Với a – b = −2 \[ \Leftrightarrow \sqrt {{x^2} + 2x + 3} - (2x + 1) = - 2\]

\[ \Leftrightarrow \sqrt {{x^2} + 2x + 3} = 2x - 1\]

x2 + 2x+ 3 = 4x2 − 4x + 1

3x2 − 6x − 2 =0

\[ \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \frac{{3 + \sqrt {15} }}{3}\,\,(TM)}\\{x = \frac{{3 - \sqrt {15} }}{3}\,\,(TM)}\end{array}} \right.\]

Vậy tập hợp giá trị x thỏa mãn là: \[S = \left\{ { - 1 \pm \sqrt 2 ;\,\,\frac{{3 \pm \sqrt {15} }}{3}} \right\}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi q(x); g(x) lần lượt là thương của phép chia f(x) cho x – 2; f(x) cho x2 – 1

Þ f(x) = q(x)(x– 2)

Và f(x) = g(x)(x2 – 1) + 2x

Þ f(2) = 8 + 4a + 2b + c = 0

f(1) = 1 + a + b + c = 2

f(–1) = – 1 + a – b + c = –2

Từ các hệ thức trên ta tìm được: 

\[a = \frac{{10}}{3}\]; b = 1; \[c = \frac{{10}}{3}\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay