Câu hỏi:

04/07/2023 3,655

Cho tam giác ABC cân tại A nội tiếp đường tròn tâm O. Gọi D là trung điểm của AB, E là trọng tâm tam giác ACD. Chứng minh rằng OE vuông góc với CD.

Sách mới 2k7: 30 đề đánh giá năng lực ĐHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).

Đề ĐGNL Hà Nội Đề ĐGNL Tp.Hồ Chí Minh Đề ĐGTD Bách Khoa HN

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Media VietJack

Gọi M là trung điểm của AC, G là trọng tâm của tam giác ABC

Nối E với G; O với D

Vì G là trọng tâm của tam giác ABC nên \(MG = \frac{1}{3}MB\)

Vì E là trọng tâm của tam giác ACD nên \(ME = \frac{1}{3}MD\)

Xét tam giác DMB có \(\frac{{MG}}{{MB}} = \frac{{ME}}{{M{\rm{D}}}}\left( { = \frac{1}{3}} \right)\)

Suy ra EG // AB (Định lí Ta lét)

Vì O là tâm đường tròn ngoại tiếp tam giác ABC nên O là giao của 3 đường trung trực

Suy ra OD là đường trung trực của AB

Do đó OD AB

Mà EG // AB, suy ra EG OD (1)

Xét tam giác ABC cân tại A có AO là đường trung trực nên đồng thời là đường trung tuyến

Mà AG cũng là đường trung tuyến (Vì G là trọng tâm tam giác)

Suy ra AO trùng với AG

Hay A; O; G thẳng hàng.

Mặt khác AO BC (vì AO là đường trung trực của đoạn BC)

DM // BC (vì DM là đường trung bình của tam giác ABC) 

Suy ra AO BC hay OG BC   (2)

Từ (1) và (2) suy ra OD và OG là hai đường cao của tam giác DEG

Mà OD cắt OG tại O, suy ra O là trực tâm của tam giác DEG 

Do đó OE DG hay OE DC

Vậy OE DC.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC có G là trọng tâm. Gọi H là chân đường cao hạ từ A sao cho \(\overrightarrow {BH} = \frac{1}{3}\overrightarrow {HC} \). Điểm M di động nằm trên BC sao cho \(\overrightarrow {BM} = x\overrightarrow {BC} \). Tìm x sao cho độ dài của \(\overrightarrow {MA} + \overrightarrow {GC} \) đạt giá trị nhỏ nhất.

Xem đáp án » 04/07/2023 17,619

Câu 2:

Số nào khác tính chất với các số còn lại: 9678, 4572, 5261, 5133, 3527, 6895, 7768.

Xem đáp án » 04/07/2023 14,686

Câu 3:

Cho đường tròn tâm O đường kính AB. Lấy điểm C thuộc đường tròn, với C không trùng A và B. Gọi I là trung điểm của AC. Vẽ tiếp tuyến của đường tròn tâm O tại tiếp điểm C cắt tia OI tại điểm D.

a) Chứng minh OI // BC.

b) Chứng minh DA là tiếp tuyến của đường tròn tâm O.

c) Vẽ CH AB (H AB) và BK CD (K CD). Chứng minh CK2 = HA . HB.

Xem đáp án » 04/07/2023 13,931

Câu 4:

Cho tam giác ABC vuông tại A có AB = 8 cm, AC = 6 cm, trung tuyến AM. Kẻ MD vuông góc với AB và Me vuông góc với AC.

a) Tứ giác ADME là hình gì? Vì sao?

b) Tìm điều kiện của tam giác ABC để tứ giác ADME là hình vuông.

c) Tính độ dài AM?

d) Tính diện tích tam giác ABM?

Xem đáp án » 04/07/2023 9,954

Câu 5:

Cho tam giác ABC có AB = AC. Gọi D là trung điểm của BC. Kẻ DE vuông góc với AB; DF vuông góc với AC. Chứng minh: 

a) ∆DEB = ∆DFC;

b) ∆AED = ∆AFD;

c) AD là tia phân giác của \(\widehat {BAC}\).

Xem đáp án » 04/07/2023 9,254

Câu 6:

Cho hình vuông ABCD có cạnh bằng 2. Tính \(T = \left| {\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {A{\rm{D}}} } \right|\).

Xem đáp án » 04/07/2023 9,229

Câu 7:

Trong các hình sau : hình vuông, hình bình hành, hình chữ nhật; hình thang cân. Những hình nào có hai đường chéo bằng nhau?

Xem đáp án » 04/07/2023 8,304

Bình luận


Bình luận