Câu hỏi:
04/07/2023 3,274Cho tam giác ABC cân tại A, O là trung điểm của BC. Vẽ đường tròn tâm O tiếp xúc với AB, AC tại H và K. Lấy E bất kỳ thuộc cung nhỏ HK. Vẽ tiếp tuyến tại E cắt AB, AC ở M, N.
a) Giả sử \(\widehat B = \widehat C = \alpha \). Tính \(\widehat {MON}\).
b) Chứng minh rằng OM, ON chia tứ giác BMNC thành ba tam giác đồng dạng.
c) Giả sử BC = 2a. Tính BM . CN.
d) MN ở vị trí nào thì tổng BM + CN nhỏ nhất?
Quảng cáo
Trả lời:
Lời giải
a) Xét tam giác ABC có
\(\widehat A + \widehat B + \widehat C = 180^\circ \) (tổng ba góc trong một tam giác)
Hay \(\widehat A + \alpha + \alpha = 180^\circ \)
Suy ra \(\widehat A = 180^\circ - 2\alpha \)
Xét tứ giác AHOK có
\(\widehat {AHO} + \widehat {AK{\rm{O}}} = 90^\circ + 90^\circ = 180^\circ \)
Suy ra tứ giác AHOK nội tiếp
Do đó \(\widehat {HAK} + \widehat {HOK} = 180^\circ \)
Hay \(180^\circ - 2\alpha + \widehat {HOK} = 180^\circ \)
Suy ra \(\widehat {HOK} = 2\alpha \)
Xét (O) có MH, ME là hai tiếp tuyến cắt nhau tại M
Suy ra OM là tia phân giác của \(\widehat {HOE}\)
Do đó \(\widehat {HOM} = \widehat {MOE} = \frac{1}{2}\widehat {HOE}\)
Xét (O) có NK, NE là hai tiếp tuyến cắt nhau tại N
Suy ra ON là tia phân giác của \(\widehat {KOE}\)
Do đó \(\widehat {KON} = \widehat {NOE} = \frac{1}{2}\widehat {KOE}\)
Ta có: \(\widehat {MON} = \widehat {MOE} + \widehat {NOE} = \frac{1}{2}\widehat {HOE} + \frac{1}{2}\widehat {K{\rm{O}}E} = \frac{1}{2}\widehat {HOK} = \frac{1}{2}.2\alpha = \alpha \)
Vậy \(\widehat {MON} = \alpha \)
b) Xét (O) có MH, ME là hai tiếp tuyến cắt nhau tại M
Suy ra MO là tia phân giác của \(\widehat {HME}\)
Do đó \(\widehat {HMO} = \widehat {OME} = \frac{1}{2}\widehat {HME}\)
Xét (O) có NK, NE là hai tiếp tuyến cắt nhau tại N
Suy ra NO là tia phân giác của \(\widehat {KNE}\)
Do đó \(\widehat {KNO} = \widehat {ONE} = \frac{1}{2}\widehat {KNE}\)
Xét ∆BMO và ∆OMN có:
\(\widehat {BMO} = \widehat {NMO}\) (chứng minh trên);
\(\widehat B = \widehat {MON}\left( { = \alpha } \right)\)
Suy ra (g.g)
Xét ∆CON và ∆OMN có
\(\widehat {CNO} = \widehat {MNO}\) (chứng minh trên);
\(\widehat C = \widehat {MON}\left( { = \alpha } \right)\)
Suy ra (g.g)
Vậy OM, ON chia tứ giác BMNC thành ba tam giác đồng dạng.
c) Vì OM, ON chia tứ giác BMNC thành ba tam giác đồng dạng
Suy ra
Do đó \(\frac{{CO}}{{BM}} = \frac{{CN}}{{BO}}\)
Suy ra BM . CN = CO . BO = a . a = a2
d) Vì tích BM . CN = a2 cố định nên tổng BM + CN nhỏ nhất khi BM = CN
Mà AB = AC
Suy ra \(\frac{{BM}}{{AB}} = \frac{{CN}}{{AC}}\)
Do đó MN // BC
Vậy khi MN // BC thì BM + CN nhỏ nhất.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Dựng hình bình hành AGCE
Ta có \(\overrightarrow {MA} + \overrightarrow {GC} = \overrightarrow {MA} + \overrightarrow {A{\rm{E}}} = \overrightarrow {ME} \)
Kẻ EF ⊥ BC (F ∈ BC)
Khi đó \(\left| {\overrightarrow {MA} + \overrightarrow {GC} } \right| = \left| {\overrightarrow {ME} = ME} \right| \ge EF\)
Do đó \(\left| {\overrightarrow {MA} + \overrightarrow {GC} } \right|\) đạt giá trị nhỏ nhất khi M ≡ F
Gọi P là trung điểm của AC, Q là hình chiếu vuông góc của P lên BC
Vì AGCE là hình bình hành, P là trung điểm của AC
Suy ra P là trung điểm của GE
Do đó \(GP = PE = \frac{1}{2}GE\)
Vì G là trọng tâm tam giác ABC, BP là trung tuyến
Suy ra \(BG = \frac{2}{3}BP,GP = \frac{1}{3}BP\)
Ta có: BE = BP + PE
Hay \(BE = BP + \frac{1}{3}BP = \frac{4}{3}BP\)
Xét ∆BPQ và ∆BEF có
\(\widehat {FBE}\) là góc chung;
\(\widehat {BQP} = \widehat {BF{\rm{E}}}\left( { = 90^\circ } \right)\)
Suy ra (g.g)
Do đó \(\frac{{BP}}{{BE}} = \frac{{BQ}}{{BF}} = \frac{3}{4}\)
Hay \(\overrightarrow {BF} = \frac{4}{3}\overrightarrow {BQ} \)
Xét DAHC có P là trung điểm của AC và AH // PQ (vì cùng vuông góc với BC)
Suy ra Q là trung điểm của CH
Hay \(\overrightarrow {HQ} = \frac{1}{2}\overrightarrow {HC} \)
Mà \(\overrightarrow {BH} = \frac{1}{3}\overrightarrow {HC} \)
Ta có \(\overrightarrow {BQ} = \overrightarrow {BH} + \overrightarrow {HQ} = \frac{1}{3}\overrightarrow {HC} + \frac{1}{2}\overrightarrow {HC} = \frac{5}{6}\overrightarrow {HC} = \frac{5}{6}.\frac{3}{4}\overrightarrow {BC} = \frac{5}{8}\overrightarrow {BC} \)
Do đó \(\overrightarrow {BF} = \frac{4}{3}\overrightarrow {BQ} = \frac{5}{6}\overrightarrow {BC} \)
Vậy \[{\rm{x}} = \frac{5}{6}\] thì độ dài của \(\overrightarrow {MA} + \overrightarrow {GC} \) đạt giá trị nhỏ nhất.
Lời giải
Lời giải
a) Xét tam giác ABC có O, I lần lượt là trung điểm của AB, AC
Suy ra OI là đường trung bình
Do đó OI // BC
b) Vì C thuộc đường tròn đường kính AB nên tam giác ABC nội tiếp (O)
Suy ra tam giác ABC vuông tại C
Xét (O) có AC là dây cung; I là trung điểm của AC
Suy ra OI là trung trực của AC
Mà D ∈ OI nên DA = DC
Xét ∆ADO và ∆CDO có
DA = DC (chứng minh trên)
DO là cạnh chung
OA = OC
Suy ra ∆ADO = ∆CDO (c.c.c)
Do đó \(\widehat {A{\rm{D}}O} = \widehat {AC{\rm{O}}}\) (hai góc tương ứng)
Mà \(\widehat {AC{\rm{O}}} = 90^\circ \) nên \(\widehat {A{\rm{D}}O} = 90^\circ \), hay AO ⊥ AD
Mà AO là bán kính của (O)
Do đó DA là tiếp tuyến của đường tròn tâm O
c) Ta có CO ⊥ CD, BK ⊥ CD
Suy ra CO // BK (quan hệ từ vuông góc đến song song)
Do đó \(\widehat {OCB} = \widehat {CBK}\) (hai góc so le trong)
Mà \(\widehat {CBO} = \widehat {OCB}\) nên \(\widehat {CBO} = \widehat {CKB}\)
Xét ∆BCH và ∆BCK có
\(\widehat {BHC} = \widehat {BKC}\left( { = 90^\circ } \right)\);
BC là cạnh chung;
\(\widehat {CBO} = \widehat {CKB}\) (chứng minh trên)
Suy ra ∆BCH = ∆BCK (cạnh huyền – góc nhọn)
Do đó CH = CK
Xét tam giác ABC vuông tại C có CH ⊥ AB, theo hệ thức lượng trong tam giác vuông ta có CH2 = HA . HB
Suy ra CK2 = HA . HB.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận