Câu hỏi:
04/07/2023 951Cho đường tròn (O; R) và điểm A nằm ngoài (O). Từ A kẻ hai tiếp tuyến AB, AC với (O) (B, C là các tiếp điểm). Gọi H là giao điểm của OA và BC. Lấy D đối xứng với B qua O. Gọi E là giao điểm của đoạn thẳng AD với (O) (E không trùng với D). Chọn câu đúng nhất:
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
Đáp án đúng là: D
Ta có AB, AC là hai tiếp tuyến của (O) nên \(\widehat {ABO} = \widehat {AC{\rm{O}}} = 90^\circ \)
Suy ra B, C cùng thuộc đường tròn đường kính OA
Nên A, B, O, C cùng thuộc một đường tròn đường kính OA. Do đó A sai.
Ta có AB, AC là hai tiếp tuyến của (O) cắt nhau tại A
Nên AB = AC và AO là phân giác của \(\widehat {BAC}\) (tính chất 2 tiếp tuyến cắt nhau)
Suy ra ∆ ABC là tam giác cân tại A
Do đó AO vừa là phân giác của \(\widehat {BAC}\) vừa là đường trung trực của BC (tính chất tam giác cân) nên B sai
Vậy ta chọn đáp án D.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Câu 4:
Cho đường tròn tâm O đường kính AB. Lấy điểm C thuộc đường tròn, với C không trùng A và B. Gọi I là trung điểm của AC. Vẽ tiếp tuyến của đường tròn tâm O tại tiếp điểm C cắt tia OI tại điểm D.
a) Chứng minh OI // BC.
b) Chứng minh DA là tiếp tuyến của đường tròn tâm O.
c) Vẽ CH ⊥ AB (H ∈ AB) và BK ⊥ CD (K ∈ CD). Chứng minh CK2 = HA . HB.
Câu 5:
Câu 6:
Câu 7:
Cho tam giác ABC có AB = AC. Gọi D là trung điểm của BC. Kẻ DE vuông góc với AB; DF vuông góc với AC. Chứng minh:
a) ∆DEB = ∆DFC;
b) ∆AED = ∆AFD;
c) AD là tia phân giác của \(\widehat {BAC}\).
về câu hỏi!