Câu hỏi:

04/07/2023 1,162 Lưu

Cho 3 đường thẳng: d1: y= mx – m + 1; d2: y = 2x + 3; d3: y = x + 1.

a) Chứng minh rằng khi m thay đổi, đường thẳng d1 luôn đi qua 1 điểm cố định.
b) Tìm m để 3 đường thẳng trên đồng qu
y. Tính tọa độ điểm giao nhau đó.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

a) Gọi điểm cố định (d1) luôn đi qua là M(x; y)

\( \Leftrightarrow y = mx - m + 1,\forall m\)

\( \Leftrightarrow \left( {x - 1} \right).m = y - 1,\forall m\)

\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x - 1 = 0}\\{y - 1 = 0}\end{array}} \right.\)\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = 1}\\{y = 1}\end{array}} \right.\)\( \Rightarrow M\left( {1;1} \right)\)

b) Phương trình hoành độ giao điểm của d2 và d3 là:

\( \Leftrightarrow 2x + 3 = x + 1\)

\( \Leftrightarrow 2x - x = 1 - 3\)

\( \Leftrightarrow x = - 2\)

\( \Rightarrow y = x + 1 = - 2 + 1 = - 1\)

Do đó giao điểm của d2 và d là điểm \(B\left( { - 2; - 1} \right)\)

Để 3 đường thẳng đồng quy thì d1 đi qua điểm \(B\left( { - 2; - 1} \right)\)

\( \Leftrightarrow - 1 = m.\left( { - 2} \right) - m + 1\)

\( \Leftrightarrow - 2m - m = - 2\)

\( \Leftrightarrow - 3m = - 2\)

\( \Leftrightarrow m = \frac{2}{3}\)

Vậy \(m = \frac{2}{3}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Media VietJack

Dựng hình bình hành AGCE

Ta có \(\overrightarrow {MA} + \overrightarrow {GC} = \overrightarrow {MA} + \overrightarrow {A{\rm{E}}} = \overrightarrow {ME} \)

Kẻ EF BC (F BC)

Khi đó \(\left| {\overrightarrow {MA} + \overrightarrow {GC} } \right| = \left| {\overrightarrow {ME} = ME} \right| \ge EF\)

Do đó \(\left| {\overrightarrow {MA} + \overrightarrow {GC} } \right|\) đạt giá trị nhỏ nhất khi M ≡ F

Gọi P là trung điểm của AC, Q là hình chiếu vuông góc của P lên BC

Vì AGCE là hình bình hành, P là trung điểm của AC

Suy ra P là trung điểm của GE

Do đó \(GP = PE = \frac{1}{2}GE\)

Vì G là trọng tâm tam giác ABC, BP là trung tuyến

Suy ra \(BG = \frac{2}{3}BP,GP = \frac{1}{3}BP\)

Ta có: BE = BP + PE

Hay \(BE = BP + \frac{1}{3}BP = \frac{4}{3}BP\)

Xét ∆BPQ và ∆BEF có

\(\widehat {FBE}\) là góc chung;

\(\widehat {BQP} = \widehat {BF{\rm{E}}}\left( { = 90^\circ } \right)\)

Suy ra (g.g)

Do đó \(\frac{{BP}}{{BE}} = \frac{{BQ}}{{BF}} = \frac{3}{4}\)

Hay \(\overrightarrow {BF} = \frac{4}{3}\overrightarrow {BQ} \)

Xét DAHC có P là trung điểm của ACAH // PQ (vì cùng vuông góc với BC)

Suy ra Q là trung điểm của CH

Hay \(\overrightarrow {HQ} = \frac{1}{2}\overrightarrow {HC} \)

\(\overrightarrow {BH} = \frac{1}{3}\overrightarrow {HC} \)

Ta có \(\overrightarrow {BQ} = \overrightarrow {BH} + \overrightarrow {HQ} = \frac{1}{3}\overrightarrow {HC} + \frac{1}{2}\overrightarrow {HC} = \frac{5}{6}\overrightarrow {HC} = \frac{5}{6}.\frac{3}{4}\overrightarrow {BC} = \frac{5}{8}\overrightarrow {BC} \)

Do đó \(\overrightarrow {BF} = \frac{4}{3}\overrightarrow {BQ} = \frac{5}{6}\overrightarrow {BC} \)

Vậy \[{\rm{x}} = \frac{5}{6}\] thì độ dài của \(\overrightarrow {MA} + \overrightarrow {GC} \) đạt giá trị nhỏ nhất.

Lời giải

Lời giải

Media VietJack

a) Xét tam giác ABC có O, I lần lượt là trung điểm của AB, AC

Suy ra OI là đường trung bình

Do đó OI // BC

b) Vì C thuộc đường tròn đường kính AB nên tam giác ABC nội tiếp (O)

Suy ra tam giác ABC vuông tại C

Xét (O) có AC là dây cung; I là trung điểm của AC

Suy ra OI là trung trực của AC

Mà D OI nên DA = DC

Xét ∆ADO và ∆CDO có

DA = DC (chứng minh trên)

DO là cạnh chung

OA = OC

Suy ra ∆ADO = ∆CDO (c.c.c)

Do đó \(\widehat {A{\rm{D}}O} = \widehat {AC{\rm{O}}}\) (hai góc tương ứng)

\(\widehat {AC{\rm{O}}} = 90^\circ \) nên \(\widehat {A{\rm{D}}O} = 90^\circ \), hay AO AD

Mà AO là bán kính của (O)

Do đó DA là tiếp tuyến của đường tròn tâm O

c) Ta có CO CD, BK CD

Suy ra CO // BK (quan hệ từ vuông góc đến song song)

Do đó \(\widehat {OCB} = \widehat {CBK}\) (hai góc so le trong)

\(\widehat {CBO} = \widehat {OCB}\) nên \(\widehat {CBO} = \widehat {CKB}\)

Xét ∆BCH và ∆BCK có

\(\widehat {BHC} = \widehat {BKC}\left( { = 90^\circ } \right)\);

BC là cạnh chung;

\(\widehat {CBO} = \widehat {CKB}\) (chứng minh trên)

Suy ra ∆BCH = ∆BCK (cạnh huyền – góc nhọn)

Do đó CH = CK

Xét tam giác ABC vuông tại C có CH AB, theo hệ thức lượng trong tam giác vuông ta có CH2 = HA . HB

Suy ra CK2 = HA . HB.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP