Câu hỏi:

04/07/2023 5,196

Cho một hình chữ nhật và một hình thoi (như hình vẽ), đường chéo EK và FH của hình thoi lần lượt bằng chiều rộng, chiều dài của hình chữ nhật ABCD, biết hình chữ nhật ABCD có chiều dài gấp đôi chiều rộng và có diện tích bằng 32 m2. Tính diện tích hình thoi EFKH.
Media VietJack

Sách mới 2k7: 30 đề đánh giá năng lực ĐHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).

Đề ĐGNL Hà Nội Đề ĐGNL Tp.Hồ Chí Minh Đề ĐGTD Bách Khoa HN

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Gọi chiều rộng hình chữ nhật là x (m)

Suy ra chiều dài hình chữ nhật là 2x (m)

Diện tích hình chữ nhật là:

x × 2x = 2x2 = 32 (m2)

Suy ra x2 = 16, do đó x = 4 (m)

Do đó EK = 4 và HF = 8

Diện tích hình thoi EFKH là:

\[{\rm{S}} = \frac{{EK.HF}}{2} = \frac{{4.8}}{2} = 16\] (m2).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC có G là trọng tâm. Gọi H là chân đường cao hạ từ A sao cho \(\overrightarrow {BH} = \frac{1}{3}\overrightarrow {HC} \). Điểm M di động nằm trên BC sao cho \(\overrightarrow {BM} = x\overrightarrow {BC} \). Tìm x sao cho độ dài của \(\overrightarrow {MA} + \overrightarrow {GC} \) đạt giá trị nhỏ nhất.

Xem đáp án » 04/07/2023 17,619

Câu 2:

Số nào khác tính chất với các số còn lại: 9678, 4572, 5261, 5133, 3527, 6895, 7768.

Xem đáp án » 04/07/2023 14,686

Câu 3:

Cho đường tròn tâm O đường kính AB. Lấy điểm C thuộc đường tròn, với C không trùng A và B. Gọi I là trung điểm của AC. Vẽ tiếp tuyến của đường tròn tâm O tại tiếp điểm C cắt tia OI tại điểm D.

a) Chứng minh OI // BC.

b) Chứng minh DA là tiếp tuyến của đường tròn tâm O.

c) Vẽ CH AB (H AB) và BK CD (K CD). Chứng minh CK2 = HA . HB.

Xem đáp án » 04/07/2023 13,931

Câu 4:

Cho tam giác ABC vuông tại A có AB = 8 cm, AC = 6 cm, trung tuyến AM. Kẻ MD vuông góc với AB và Me vuông góc với AC.

a) Tứ giác ADME là hình gì? Vì sao?

b) Tìm điều kiện của tam giác ABC để tứ giác ADME là hình vuông.

c) Tính độ dài AM?

d) Tính diện tích tam giác ABM?

Xem đáp án » 04/07/2023 9,954

Câu 5:

Cho tam giác ABC có AB = AC. Gọi D là trung điểm của BC. Kẻ DE vuông góc với AB; DF vuông góc với AC. Chứng minh: 

a) ∆DEB = ∆DFC;

b) ∆AED = ∆AFD;

c) AD là tia phân giác của \(\widehat {BAC}\).

Xem đáp án » 04/07/2023 9,254

Câu 6:

Cho hình vuông ABCD có cạnh bằng 2. Tính \(T = \left| {\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {A{\rm{D}}} } \right|\).

Xem đáp án » 04/07/2023 9,229

Câu 7:

Trong các hình sau : hình vuông, hình bình hành, hình chữ nhật; hình thang cân. Những hình nào có hai đường chéo bằng nhau?

Xem đáp án » 04/07/2023 8,304

Bình luận


Bình luận