Câu hỏi:

04/07/2023 2,369

Một người gửi ngân hàng 100 triệu đồng với kỳ hạn 3 tháng, lãi suất 2% một quý theo hình thức lãi kép. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước đó. Tổng số tiền người đó nhận được sau 1 năm kể từ khi bắt đầu gửi tiền gần với kết quả nào sau đây:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Đáp án đúng là: A

Sau 6 tháng đầu người đó nhận được số tiền là

A1 = 100 . (1 + 2%)2 = 104,04 (triệu đồng)

Số tiền người đó có ngay sau khi gửi thêm 100 triệu là:

104,04 + 100 = 204,04 (triệu đồng)

Số tiền người đó nhận được sau 1 năm là:

A2 = 204,04 . (1 + 2%)2 = 212,283 (triệu đồng) 212 triệu đồng

Vậy ta chọn đáp án A.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Media VietJack

Dựng hình bình hành AGCE

Ta có \(\overrightarrow {MA} + \overrightarrow {GC} = \overrightarrow {MA} + \overrightarrow {A{\rm{E}}} = \overrightarrow {ME} \)

Kẻ EF BC (F BC)

Khi đó \(\left| {\overrightarrow {MA} + \overrightarrow {GC} } \right| = \left| {\overrightarrow {ME} = ME} \right| \ge EF\)

Do đó \(\left| {\overrightarrow {MA} + \overrightarrow {GC} } \right|\) đạt giá trị nhỏ nhất khi M ≡ F

Gọi P là trung điểm của AC, Q là hình chiếu vuông góc của P lên BC

Vì AGCE là hình bình hành, P là trung điểm của AC

Suy ra P là trung điểm của GE

Do đó \(GP = PE = \frac{1}{2}GE\)

Vì G là trọng tâm tam giác ABC, BP là trung tuyến

Suy ra \(BG = \frac{2}{3}BP,GP = \frac{1}{3}BP\)

Ta có: BE = BP + PE

Hay \(BE = BP + \frac{1}{3}BP = \frac{4}{3}BP\)

Xét ∆BPQ và ∆BEF có

\(\widehat {FBE}\) là góc chung;

\(\widehat {BQP} = \widehat {BF{\rm{E}}}\left( { = 90^\circ } \right)\)

Suy ra (g.g)

Do đó \(\frac{{BP}}{{BE}} = \frac{{BQ}}{{BF}} = \frac{3}{4}\)

Hay \(\overrightarrow {BF} = \frac{4}{3}\overrightarrow {BQ} \)

Xét DAHC có P là trung điểm của ACAH // PQ (vì cùng vuông góc với BC)

Suy ra Q là trung điểm của CH

Hay \(\overrightarrow {HQ} = \frac{1}{2}\overrightarrow {HC} \)

\(\overrightarrow {BH} = \frac{1}{3}\overrightarrow {HC} \)

Ta có \(\overrightarrow {BQ} = \overrightarrow {BH} + \overrightarrow {HQ} = \frac{1}{3}\overrightarrow {HC} + \frac{1}{2}\overrightarrow {HC} = \frac{5}{6}\overrightarrow {HC} = \frac{5}{6}.\frac{3}{4}\overrightarrow {BC} = \frac{5}{8}\overrightarrow {BC} \)

Do đó \(\overrightarrow {BF} = \frac{4}{3}\overrightarrow {BQ} = \frac{5}{6}\overrightarrow {BC} \)

Vậy \[{\rm{x}} = \frac{5}{6}\] thì độ dài của \(\overrightarrow {MA} + \overrightarrow {GC} \) đạt giá trị nhỏ nhất.

Lời giải

Lời giải

Media VietJack

a) Xét tam giác ABC có O, I lần lượt là trung điểm của AB, AC

Suy ra OI là đường trung bình

Do đó OI // BC

b) Vì C thuộc đường tròn đường kính AB nên tam giác ABC nội tiếp (O)

Suy ra tam giác ABC vuông tại C

Xét (O) có AC là dây cung; I là trung điểm của AC

Suy ra OI là trung trực của AC

Mà D OI nên DA = DC

Xét ∆ADO và ∆CDO có

DA = DC (chứng minh trên)

DO là cạnh chung

OA = OC

Suy ra ∆ADO = ∆CDO (c.c.c)

Do đó \(\widehat {A{\rm{D}}O} = \widehat {AC{\rm{O}}}\) (hai góc tương ứng)

\(\widehat {AC{\rm{O}}} = 90^\circ \) nên \(\widehat {A{\rm{D}}O} = 90^\circ \), hay AO AD

Mà AO là bán kính của (O)

Do đó DA là tiếp tuyến của đường tròn tâm O

c) Ta có CO CD, BK CD

Suy ra CO // BK (quan hệ từ vuông góc đến song song)

Do đó \(\widehat {OCB} = \widehat {CBK}\) (hai góc so le trong)

\(\widehat {CBO} = \widehat {OCB}\) nên \(\widehat {CBO} = \widehat {CKB}\)

Xét ∆BCH và ∆BCK có

\(\widehat {BHC} = \widehat {BKC}\left( { = 90^\circ } \right)\);

BC là cạnh chung;

\(\widehat {CBO} = \widehat {CKB}\) (chứng minh trên)

Suy ra ∆BCH = ∆BCK (cạnh huyền – góc nhọn)

Do đó CH = CK

Xét tam giác ABC vuông tại C có CH AB, theo hệ thức lượng trong tam giác vuông ta có CH2 = HA . HB

Suy ra CK2 = HA . HB.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Trong các hình sau : hình vuông, hình bình hành, hình chữ nhật; hình thang cân. Những hình nào có hai đường chéo bằng nhau?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay