Một người gửi ngân hàng 100 triệu đồng với kỳ hạn 3 tháng, lãi suất 2% một quý theo hình thức lãi kép. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước đó. Tổng số tiền người đó nhận được sau 1 năm kể từ khi bắt đầu gửi tiền gần với kết quả nào sau đây:
Quảng cáo
Trả lời:
Lời giải
Đáp án đúng là: A
Sau 6 tháng đầu người đó nhận được số tiền là
A1 = 100 . (1 + 2%)2 = 104,04 (triệu đồng)
Số tiền người đó có ngay sau khi gửi thêm 100 triệu là:
104,04 + 100 = 204,04 (triệu đồng)
Số tiền người đó nhận được sau 1 năm là:
A2 = 204,04 . (1 + 2%)2 = 212,283 (triệu đồng) ≈ 212 triệu đồng
Vậy ta chọn đáp án A.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Dựng hình bình hành AGCE
Ta có \(\overrightarrow {MA} + \overrightarrow {GC} = \overrightarrow {MA} + \overrightarrow {A{\rm{E}}} = \overrightarrow {ME} \)
Kẻ EF ⊥ BC (F ∈ BC)
Khi đó \(\left| {\overrightarrow {MA} + \overrightarrow {GC} } \right| = \left| {\overrightarrow {ME} = ME} \right| \ge EF\)
Do đó \(\left| {\overrightarrow {MA} + \overrightarrow {GC} } \right|\) đạt giá trị nhỏ nhất khi M ≡ F
Gọi P là trung điểm của AC, Q là hình chiếu vuông góc của P lên BC
Vì AGCE là hình bình hành, P là trung điểm của AC
Suy ra P là trung điểm của GE
Do đó \(GP = PE = \frac{1}{2}GE\)
Vì G là trọng tâm tam giác ABC, BP là trung tuyến
Suy ra \(BG = \frac{2}{3}BP,GP = \frac{1}{3}BP\)
Ta có: BE = BP + PE
Hay \(BE = BP + \frac{1}{3}BP = \frac{4}{3}BP\)
Xét ∆BPQ và ∆BEF có
\(\widehat {FBE}\) là góc chung;
\(\widehat {BQP} = \widehat {BF{\rm{E}}}\left( { = 90^\circ } \right)\)
Suy ra (g.g)
Do đó \(\frac{{BP}}{{BE}} = \frac{{BQ}}{{BF}} = \frac{3}{4}\)
Hay \(\overrightarrow {BF} = \frac{4}{3}\overrightarrow {BQ} \)
Xét DAHC có P là trung điểm của AC và AH // PQ (vì cùng vuông góc với BC)
Suy ra Q là trung điểm của CH
Hay \(\overrightarrow {HQ} = \frac{1}{2}\overrightarrow {HC} \)
Mà \(\overrightarrow {BH} = \frac{1}{3}\overrightarrow {HC} \)
Ta có \(\overrightarrow {BQ} = \overrightarrow {BH} + \overrightarrow {HQ} = \frac{1}{3}\overrightarrow {HC} + \frac{1}{2}\overrightarrow {HC} = \frac{5}{6}\overrightarrow {HC} = \frac{5}{6}.\frac{3}{4}\overrightarrow {BC} = \frac{5}{8}\overrightarrow {BC} \)
Do đó \(\overrightarrow {BF} = \frac{4}{3}\overrightarrow {BQ} = \frac{5}{6}\overrightarrow {BC} \)
Vậy \[{\rm{x}} = \frac{5}{6}\] thì độ dài của \(\overrightarrow {MA} + \overrightarrow {GC} \) đạt giá trị nhỏ nhất.
Lời giải
Lời giải
a) Xét tam giác ABC có O, I lần lượt là trung điểm của AB, AC
Suy ra OI là đường trung bình
Do đó OI // BC
b) Vì C thuộc đường tròn đường kính AB nên tam giác ABC nội tiếp (O)
Suy ra tam giác ABC vuông tại C
Xét (O) có AC là dây cung; I là trung điểm của AC
Suy ra OI là trung trực của AC
Mà D ∈ OI nên DA = DC
Xét ∆ADO và ∆CDO có
DA = DC (chứng minh trên)
DO là cạnh chung
OA = OC
Suy ra ∆ADO = ∆CDO (c.c.c)
Do đó \(\widehat {A{\rm{D}}O} = \widehat {AC{\rm{O}}}\) (hai góc tương ứng)
Mà \(\widehat {AC{\rm{O}}} = 90^\circ \) nên \(\widehat {A{\rm{D}}O} = 90^\circ \), hay AO ⊥ AD
Mà AO là bán kính của (O)
Do đó DA là tiếp tuyến của đường tròn tâm O
c) Ta có CO ⊥ CD, BK ⊥ CD
Suy ra CO // BK (quan hệ từ vuông góc đến song song)
Do đó \(\widehat {OCB} = \widehat {CBK}\) (hai góc so le trong)
Mà \(\widehat {CBO} = \widehat {OCB}\) nên \(\widehat {CBO} = \widehat {CKB}\)
Xét ∆BCH và ∆BCK có
\(\widehat {BHC} = \widehat {BKC}\left( { = 90^\circ } \right)\);
BC là cạnh chung;
\(\widehat {CBO} = \widehat {CKB}\) (chứng minh trên)
Suy ra ∆BCH = ∆BCK (cạnh huyền – góc nhọn)
Do đó CH = CK
Xét tam giác ABC vuông tại C có CH ⊥ AB, theo hệ thức lượng trong tam giác vuông ta có CH2 = HA . HB
Suy ra CK2 = HA . HB.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.