Câu hỏi:
04/07/2023 5,187Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
Hoành độ giao điểm của đường thẳng d: y = mx + 2 và (C) là nghiệm của phương trình: \(\frac{{2{\rm{x}} - 1}}{{x + 1}} = m{\rm{x}} + 2\)
⇔ 2x – 1 = (mx + 2)(x + 1)
⇔ 2x – 1 = mx2 + mx + 2x + 2
⇔ mx2 + mx + 3 = 0 (1)
Với m = 0 thì (1) vô nghiệm
Với m ≠ 0, thì (1) là phương trình bậc hai ẩn x.
Khi đó đường thẳng d cắt (C) tại hai điểm phân biệt khi và chỉ khi (1) có hai nghiệm phân biệt khác –1
\( \Leftrightarrow \left\{ \begin{array}{l}\Delta > 0\\m{\left( { - 1} \right)^2} + m\left( { - 1} \right) + 3 \ne 0\end{array} \right.\)
⇔ m2 – 12m > 0
⇔ m(m – 12) > 0
\( \Leftrightarrow \left[ \begin{array}{l}m < 0\\m > 12\end{array} \right.\)
Giả sử x1; x2 là 2 nghiệm phân biệt của (1)
Khi đó tọa độ các giao điểm là A(x1; mx1 + 2) và B(x2; mx2 + 2)
Tam giác OAB vuông tại O khi và chỉ khi \(\overrightarrow {OA} .\overrightarrow {OB} = 0\)
⇔ (1 + m2)x1x2 + 2m(x1 + x2) + 4 = 0 (*)
Áp dụng định lý Vi – ét ta có \[\left\{ \begin{array}{l}{{\rm{x}}_1} + {x_2} = - 1\\{x_1}{x_2} = \frac{3}{m}\end{array} \right.\]
Thay vào (*) ta được m2 + 4m + 3 = 0
\( \Leftrightarrow \left[ \begin{array}{l}m = - 3\\m = - 1\end{array} \right.\) (thỏa mãn)
Vậy m ∈ {–3; –1}.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Câu 4:
Cho đường tròn tâm O đường kính AB. Lấy điểm C thuộc đường tròn, với C không trùng A và B. Gọi I là trung điểm của AC. Vẽ tiếp tuyến của đường tròn tâm O tại tiếp điểm C cắt tia OI tại điểm D.
a) Chứng minh OI // BC.
b) Chứng minh DA là tiếp tuyến của đường tròn tâm O.
c) Vẽ CH ⊥ AB (H ∈ AB) và BK ⊥ CD (K ∈ CD). Chứng minh CK2 = HA . HB.
Câu 5:
Câu 6:
Cho tam giác ABC có AB = AC. Gọi D là trung điểm của BC. Kẻ DE vuông góc với AB; DF vuông góc với AC. Chứng minh:
a) ∆DEB = ∆DFC;
b) ∆AED = ∆AFD;
c) AD là tia phân giác của \(\widehat {BAC}\).
về câu hỏi!