Câu hỏi:

13/07/2024 1,534

Cho hình thang cân ABCD. Gọi E là trung điểm của cạnh AB.

a) Chứng minh tam giác EDC cân

b) Gọi I, K, M theo thứ tự là trung điểm của BC, CD, DA. Tứ giác EIKM là hình gì? Vì sao?

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình thang cân ABCD. Gọi E là trung điểm của cạnh AB. a) Chứng minh  (ảnh 1)

a) Xét ∆AED và ∆BEC có:

AE = BE

\(\widehat {EAD} = \widehat {EBC}\) (Vì ABCD là hình thang cân)

AD = BC (Vì ABCD là hình thang cân)

Do đó ∆AED = ∆BEC (c.g.c)

Þ ED = EC (Hai cạnh tương ứng bằng nhau)

Xét ∆EDC có DE = EC (cmt)

Do đó ∆EDC cân tại E

b) Xét ∆ADC có:

AM = MD (gt)

DK = KC (gt)

Do đó MK là đường trung bình của ∆ADC

Þ MK // AC và \(MK = \frac{1}{2}AC\) (1)

Chứng minh tương tự, ta có: EI là đường trung bình của ∆ABC

Þ EI // AC và \(EI = \frac{1}{2}AC\) (2)

Từ (1) và (2) suy ra: MK // EI và MK = EI

Do đó EIKM là hình bình hành (3)

Lại có: ME là đường trung bình của ∆ABD

\( \Rightarrow ME = \frac{1}{2}BD\)

Mà BD = AC (Vì ABCD là hình thang cân)

nên ME = MK (4)

Từ (3) và (4) suy ra: EIKM là hình thoi

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Rút gọn biểu thức: cos2 10° + cos2 20° + cos2 30° + ... + cos2 180°.

Xem đáp án » 13/07/2024 33,326

Câu 2:

Cho hình thang ABCD vuông tại A và D. AB = AD = a, CD = 2a. Tính  \(\overrightarrow {AC} \,.\,\overrightarrow {BD} \).

Xem đáp án » 13/07/2024 18,983

Câu 3:

Có bao nhiêu số tự nhiên có 3 chữ số khác nhau. Biết tổng của 3 chữ số này là 18.

Xem đáp án » 13/07/2024 14,434

Câu 4:

Cho hình vuông ABCD có AC cắt BD tại O. M là điểm bất kỳ thuộc cạnh BC (M khác B, C). Tia AM cắt đường thẳng CD tại N. Trên cạnh AB lấy điểm E sao cho BE = CM.

a) Chứng minh: ∆OEM vuông cân.

b) Chứng minh: ME // BN.

c) Từ C kẻ CH vuông góc BN (H thuộc BN). Chứng minh rằng ba điểm O, M, H thẳng hàng.

Xem đáp án » 13/07/2024 10,663

Câu 5:

Hãy tính biểu thức sau: A = 2.sin 30° − 2.cos60° + tan 45°.

Xem đáp án » 13/07/2024 3,179

Câu 6:

Cho tam giác ABC.

a) Hãy xác định điểm M để \(\overrightarrow {MA} + \overrightarrow {MB} + 2\overrightarrow {MC} = \overrightarrow 0 \).

b) Chứng minh rằng với mọi điểm O ta có: \(\overrightarrow {OA} + \overrightarrow {OB} + 2\overrightarrow {OC} = 4\overrightarrow {OM} \).

Xem đáp án » 13/07/2024 2,891

Câu 7:

Cho ABCD là hình bình hành. Chứng minh \(\overrightarrow {MB} - \overrightarrow {MA} = \overrightarrow {MC} - \overrightarrow {MD} \) với mỗi điểm M trong mặt phẳng.

Xem đáp án » 13/07/2024 2,733

Bình luận


Bình luận