Câu hỏi:

13/07/2024 353

Cho hình thang cân ABCD (AB // CD). Gọi E là trung điểm cạnh AB. Gọi I, K, M lần lượt là trung điểm của BC, CD, DA.

a) Tứ giác EIKM là hình gì?

b) Tìm điều kiện của hình thang ABCD để EIKM là hình vuông.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình thang cân ABCD (AB // CD). Gọi E là trung điểm cạnh AB. Gọi I, K, M  (ảnh 1)

a) Xét tam giác ABC có E; I lần lượt là trung điểm của AB và BC.

Suy ra ta có EI là đường trung bình của tam giác ABC.

Do đó EI // AC, \(EI = \frac{1}{2}AC\) (1)

Chứng minh tương tự ta có: MK // AC, \(MK = \frac{1}{2}AC\) (2)

ME // BD, \(ME = \frac{1}{2}BD\) (3)

Mặt khác AC = BD (do tứ giác ABCD là hình thang cân) (4)

Từ (3) và (4) suy ra \[ME = \frac{1}{2}AC = MK\] (5)

Từ (1); (2); (5) suy ra tứ giác EIKM là hình thoi.

b) Để tứ giác EIMK là hình vuông thì EM ^ EI.

Mà theo câu a) ta có: EI // AC; EM // BD.

Khi đó suy ra để tứ giác EIMK là hình vuông thì AC ^ BD.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Rút gọn biểu thức: cos2 10° + cos2 20° + cos2 30° + ... + cos2 180°.

Xem đáp án » 13/07/2024 33,326

Câu 2:

Cho hình thang ABCD vuông tại A và D. AB = AD = a, CD = 2a. Tính  \(\overrightarrow {AC} \,.\,\overrightarrow {BD} \).

Xem đáp án » 13/07/2024 18,980

Câu 3:

Có bao nhiêu số tự nhiên có 3 chữ số khác nhau. Biết tổng của 3 chữ số này là 18.

Xem đáp án » 13/07/2024 14,426

Câu 4:

Cho hình vuông ABCD có AC cắt BD tại O. M là điểm bất kỳ thuộc cạnh BC (M khác B, C). Tia AM cắt đường thẳng CD tại N. Trên cạnh AB lấy điểm E sao cho BE = CM.

a) Chứng minh: ∆OEM vuông cân.

b) Chứng minh: ME // BN.

c) Từ C kẻ CH vuông góc BN (H thuộc BN). Chứng minh rằng ba điểm O, M, H thẳng hàng.

Xem đáp án » 13/07/2024 10,662

Câu 5:

Hãy tính biểu thức sau: A = 2.sin 30° − 2.cos60° + tan 45°.

Xem đáp án » 13/07/2024 3,179

Câu 6:

Cho tam giác ABC.

a) Hãy xác định điểm M để \(\overrightarrow {MA} + \overrightarrow {MB} + 2\overrightarrow {MC} = \overrightarrow 0 \).

b) Chứng minh rằng với mọi điểm O ta có: \(\overrightarrow {OA} + \overrightarrow {OB} + 2\overrightarrow {OC} = 4\overrightarrow {OM} \).

Xem đáp án » 13/07/2024 2,891

Câu 7:

Cho ABCD là hình bình hành. Chứng minh \(\overrightarrow {MB} - \overrightarrow {MA} = \overrightarrow {MC} - \overrightarrow {MD} \) với mỗi điểm M trong mặt phẳng.

Xem đáp án » 13/07/2024 2,732

Bình luận


Bình luận