Câu hỏi:
13/07/2024 168Xác định a, b, c biết parabol y = ax2 + bx + c đi qua điểm A(8; 0) và có đỉnh là I(6; −12).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
+ Parabol y = ax2 + bx + c đi qua điểm A(8; 0)
Þ 0 = a.82 + b.8 + c Þ 64a + 8b + c = 0 (1).
+ Parabol y = ax2 + bx + c có đỉnh là I (6; –12) suy ra:
\(\frac{{ - b}}{{2a}} = 6 \Rightarrow b = - 12a\) (2).
\(\frac{{ - \Delta }}{{4a}} = - 12 \Rightarrow \Delta = 48a \Rightarrow {b^2} - 4ac = 48a\) (3) .
Thay (2) vào (1) ta có: 64a − 96a + c = 0 Þ c = 32a.
Thay b = −12a và c = 32a vào (3) ta được:
(−12a)2 − 4a.32a = 48a
Þ 144a2 − 128a2 = 48a
Þ 16a2 = 48a
Þ a = 3 (vì a ≠ 0).
Từ a = 3 Þ b = −36 và c = 96.
Vậy a = 3; b = −36 và c = 96.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Rút gọn biểu thức: cos2 10° + cos2 20° + cos2 30° + ... + cos2 180°.
Câu 2:
Có bao nhiêu số tự nhiên có 3 chữ số khác nhau. Biết tổng của 3 chữ số này là 18.
Câu 3:
Cho hình thang ABCD vuông tại A và D. AB = AD = a, CD = 2a. Tính \(\overrightarrow {AC} \,.\,\overrightarrow {BD} \).
Câu 4:
Cho hình vuông ABCD có AC cắt BD tại O. M là điểm bất kỳ thuộc cạnh BC (M khác B, C). Tia AM cắt đường thẳng CD tại N. Trên cạnh AB lấy điểm E sao cho BE = CM.
a) Chứng minh: ∆OEM vuông cân.
b) Chứng minh: ME // BN.
c) Từ C kẻ CH vuông góc BN (H thuộc BN). Chứng minh rằng ba điểm O, M, H thẳng hàng.
Câu 6:
Cho tam giác ABC nhọn, đường cao AH. Gọi M, N lần lượt là hình chiếu của H lên AB và AC
a) Chứng minh AM.AB = AN.AC.
b) Chứng minh tam giác AMN đồng dạng tam giác ACB.
Câu 7:
Cho tam giác ABC.
a) Hãy xác định điểm M để \(\overrightarrow {MA} + \overrightarrow {MB} + 2\overrightarrow {MC} = \overrightarrow 0 \).
b) Chứng minh rằng với mọi điểm O ta có: \(\overrightarrow {OA} + \overrightarrow {OB} + 2\overrightarrow {OC} = 4\overrightarrow {OM} \).
về câu hỏi!