Câu hỏi:

04/07/2023 648

Cho hình bình hành ABCD, gọi O là giao điểm của AC và BD. Các khẳng định sau đúng hay sai?

a) \(\left| {\overrightarrow {AB} + \overrightarrow {AD} } \right| = \left| {\overrightarrow {AC} } \right|\);

b) \(\overrightarrow {AB} + \overrightarrow {BD} = \overrightarrow {CB} \);

c) \(\overrightarrow {OA} + \overrightarrow {OB} = \overrightarrow {OC} + \overrightarrow {OD} \).

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình bình hành ABCD, gọi O là giao điểm của AC và BD. Các khẳng định sau  (ảnh 1)

+ Do ABCD là hình bình hành nên \(\overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow {AC} \)

Do đó: \(\left| {\overrightarrow {AB} + \overrightarrow {AD} } \right| = \left| {\overrightarrow {AC} } \right|\). Vậy khẳng định a) đúng.

+ Ta có: \(\left| {\overrightarrow {AB} + \overrightarrow {BD} } \right| = \left| {\overrightarrow {AD} } \right|\)

Mà \(\overrightarrow {AD} = \overrightarrow {BC} \) (do AD // = BC)

Do đó: \(\overrightarrow {AB} + \overrightarrow {BD} = \overrightarrow {AD} = \overrightarrow {BC} = - \overrightarrow {CB} \)

Vậy khẳng định b) sai.

+ Do O là giao điểm hai đường chéo AC và BD của hình bình hành ABCD nên O là trung điểm của AC và BD.

Khi đó ta có: \(\overrightarrow {OA} = \overrightarrow {CO} ;\;\overrightarrow {OD} = \overrightarrow {BO} \)

Do đó: \(\left\{ \begin{array}{l}\overrightarrow {OA} + \overrightarrow {OB} = \overrightarrow {CO} + \overrightarrow {OB} = \overrightarrow {CB} = - \overrightarrow {BC} \\\overrightarrow {OC} + \overrightarrow {OD} = \overrightarrow {OC} + \overrightarrow {BO} = \overrightarrow {BO} + \overrightarrow {OC} = - \overrightarrow {BC} \end{array} \right.\)

Suy ra: \(\overrightarrow {OA} + \overrightarrow {OB} = - \left( {\overrightarrow {OC} + \overrightarrow {OD} } \right)\)

Vậy khẳng định c) sai.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Rút gọn biểu thức: cos2 10° + cos2 20° + cos2 30° + ... + cos2 180°.

Xem đáp án » 13/07/2024 33,559

Câu 2:

Cho hình thang ABCD vuông tại A và D. AB = AD = a, CD = 2a. Tính  \(\overrightarrow {AC} \,.\,\overrightarrow {BD} \).

Xem đáp án » 13/07/2024 19,377

Câu 3:

Có bao nhiêu số tự nhiên có 3 chữ số khác nhau. Biết tổng của 3 chữ số này là 18.

Xem đáp án » 13/07/2024 18,960

Câu 4:

Cho hình vuông ABCD có AC cắt BD tại O. M là điểm bất kỳ thuộc cạnh BC (M khác B, C). Tia AM cắt đường thẳng CD tại N. Trên cạnh AB lấy điểm E sao cho BE = CM.

a) Chứng minh: ∆OEM vuông cân.

b) Chứng minh: ME // BN.

c) Từ C kẻ CH vuông góc BN (H thuộc BN). Chứng minh rằng ba điểm O, M, H thẳng hàng.

Xem đáp án » 13/07/2024 12,322

Câu 5:

Hãy tính biểu thức sau: A = 2.sin 30° − 2.cos60° + tan 45°.

Xem đáp án » 13/07/2024 3,232

Câu 6:

Dấu hiệu chia hết cho 2, 3, 5, 9, 4, 8, 25, 125, 11.

Xem đáp án » 13/07/2024 3,128

Câu 7:

Cho tam giác ABC.

a) Hãy xác định điểm M để \(\overrightarrow {MA} + \overrightarrow {MB} + 2\overrightarrow {MC} = \overrightarrow 0 \).

b) Chứng minh rằng với mọi điểm O ta có: \(\overrightarrow {OA} + \overrightarrow {OB} + 2\overrightarrow {OC} = 4\overrightarrow {OM} \).

Xem đáp án » 13/07/2024 2,930