Câu hỏi:

19/08/2025 1,260 Lưu

Cho nửa đường tròn tâm O đường kính AB, M là một điểm bất kỳ thuộc nửa đường tròn (M khác A, B). Tiếp tuyến tại M cắt các tiếp tuyến Ax và By của nửa đường tròn đó lần lượt tại C và D. Gọi K là giao điểm của BM với Ax. Tìm giá trị nhỏ nhất của tổng diện tích hai tam giác ACM và BDM.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Cho nửa đường tròn tâm O đường kính AB, M là một điểm bất kỳ thuộc nửa đường  (ảnh 1)

Ta có: SCAM + SMBD = SCABD − SAMB nhỏ nhất khi SCABD nhỏ nhất và SAMB lớn nhất

Ta thấy SAMB lớn nhất khi M là điểm chính giữa (dễ dàng chứng minh)
Mặt khác: 
\({S_{CABD}} = \frac{{\left( {CA + BD} \right)\,.\,AB}}{2} = \left( {CA + BD} \right)\,.\,R\)

\( \ge 2\sqrt {CA\,.\,BD} \,.\,R = 2\sqrt {OA\,.\,OD} \,.\,R = 2{R^2}\)

Vậy để SCABD nhỏ nhất thì CA = BD khi đó M cũng là điểm chính giữa nửa đường tròn.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có: cos x = − cos (180° − x) Þ cos2 x = cos2 (180° − x)

sin x = cos (90° − x)

sin2 x + cos2 x = 1

A = cos2 10° + cos2 20° + cos2 30° + ... + cos2 180°

= cos2 10° + cos2 20° + cos2 30° + ... + cos2 180°

= cos2 10° + cos2 20° + ... + cos2 80° + cos2 90° + cos2 80° + cos2 70° + ... + cos2 0°

= cos2 0° + cos2 90° + 2(cos2 10° + cos2 20° + ... + cos2 80°)

= 1 + 0 + 2(cos2 10° + cos2 20° + cos2 30° + cos2 40° + sin2 40° + sin2 30° + sin2 20° + sin2 10°)

= 1 + 0 + 2 . 4 = 9.

Lời giải

\(\overrightarrow {AC} \,.\,\overrightarrow {BD} = \left( {\overrightarrow {AD} \, + \,\overrightarrow {DC} } \right)\left( {\overrightarrow {BA} \, + \,\overrightarrow {AD} } \right)\)

\( = \overrightarrow {AD} \,.\,\overrightarrow {BA} + {\overrightarrow {AD} ^2} + \overrightarrow {DC} \,.\,\overrightarrow {BA} + \overrightarrow {DC} \,.\,\overrightarrow {AD} \)

\( = {\overrightarrow {AD} ^2} - \overrightarrow {AB} \,.\,\overrightarrow {DC} = {a^2} - a\,.\,2a = - {a^2}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP