Câu hỏi:

13/07/2024 2,539

Cho nửa đường tròn (O) đường kính AB. M là trung điểm OA. N là điểm bất kỳ thuộc nửa đường tròn. Qua N kẻ đường thẳng vuông góc với MN cắt các tiếp tuyến tại A và B tại C và D. Tìm vị trí của N để diện tích tam giác DMC min.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho nửa đường tròn (O) đường kính AB. M là trung điểm OA. N là điểm bất kỳ  (ảnh 1)

Tứ giác AMNC có \(\widehat {MAC} + \widehat {MNC} = 90^\circ + 90^\circ = 180^\circ \) nên tứ giác AMNC là tứ giác nội tiếp đường tròn

Khi đó \(\widehat {CNM} = \widehat {CMA}\) (Hai góc cùng chắn cung CA)

Chứng minh tương tự ta được MBDN là tứ giác nội tiếp nên suy ra

\(\widehat {DNB} = \widehat {DMB}\) (Hai góc cùng chắn cung DB)

Suy ra \(\widehat {CNM} + \widehat {DNB} = \widehat {CMA} + \widehat {DMB}\)

\( \Rightarrow 180^\circ - \left( {\widehat {CNM} + \widehat {DNB}} \right) = 180^\circ - \left( {\widehat {CMA} + \widehat {DMB}} \right)\)

\( \Rightarrow \widehat {ANB} = \widehat {CMD} \Rightarrow \widehat {CMD} = 90^\circ \Rightarrow CM \bot DM\)

Suy ra \[\widehat {CMA} + \widehat {DMB} = 90^\circ \]

\[\widehat {CMA} + \widehat {ACM} = 90^\circ \]

Do đó \(\widehat {ACM} = \widehat {BMD}\)

Xét ∆ACM và ∆BMD có:

\(\widehat {ACM} = \widehat {BMD}\) (cmt)

\(\widehat {CAM} = \widehat {MBD} = 90^\circ \)

Suy ra ∆ACM ∆BMD (g.g)

\( \Rightarrow \frac{{AM}}{{BD}} = \frac{{AC}}{{BM}} \Rightarrow AM\,.\,BM = BD\,.\,AC\) (không đổi)

Theo Bunhiacopxki, ta có:

(AM.BM + AC.BD)2 ≤ (AM2 + AC2)(BM2 + BD2) = MC2.MD2 = 4(SDMC)2

Þ SDMC đạt giá trị nhỏ nhất khi AC = AM, BD = BM

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Rút gọn biểu thức: cos2 10° + cos2 20° + cos2 30° + ... + cos2 180°.

Xem đáp án » 13/07/2024 34,272

Câu 2:

Có bao nhiêu số tự nhiên có 3 chữ số khác nhau. Biết tổng của 3 chữ số này là 18.

Xem đáp án » 13/07/2024 22,589

Câu 3:

Cho hình thang ABCD vuông tại A và D. AB = AD = a, CD = 2a. Tính  \(\overrightarrow {AC} \,.\,\overrightarrow {BD} \).

Xem đáp án » 13/07/2024 19,765

Câu 4:

Cho hình vuông ABCD có AC cắt BD tại O. M là điểm bất kỳ thuộc cạnh BC (M khác B, C). Tia AM cắt đường thẳng CD tại N. Trên cạnh AB lấy điểm E sao cho BE = CM.

a) Chứng minh: ∆OEM vuông cân.

b) Chứng minh: ME // BN.

c) Từ C kẻ CH vuông góc BN (H thuộc BN). Chứng minh rằng ba điểm O, M, H thẳng hàng.

Xem đáp án » 13/07/2024 13,552

Câu 5:

Dấu hiệu chia hết cho 2, 3, 5, 9, 4, 8, 25, 125, 11.

Xem đáp án » 13/07/2024 3,990

Câu 6:

Hãy tính biểu thức sau: A = 2.sin 30° − 2.cos60° + tan 45°.

Xem đáp án » 13/07/2024 3,482

Câu 7:

Gọi S là tập các số tự nhiên có 6 chữ số được lập từ tập hợp A = {0; 1; 2; 3; 4; 5; 6; 7; 8; 9}. Chọn ngẫu nhiên một số từ tập hợp S. Tính xác suất để chọn được số tự nhiên có tích các chữ số bằng 1400.

Xem đáp án » 13/07/2024 3,425
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay