Câu hỏi:

19/08/2025 3,295 Lưu

Cho hình thang ABCD vuông tại A và D có AB = 6a, AD = 3a, CD = 3a. Gọi M là điểm thuộc cạnh AD sao cho AM = a. Tính \(T = \left( {\overrightarrow {MB} + 2\overrightarrow {MC} } \right)\,.\,\overrightarrow {CB} \).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Cho hình thang ABCD vuông tại A và D có AB = 6a, AD = 3a, CD = 3a. Gọi M (ảnh 1)

Gọi E là chân đường vuông góc hạ từ C xuống AB

Tứ giác ADCE là hình vuông Þ CE = 3a

\( \Rightarrow CE = \frac{1}{2}AB\) Þ ∆ACB vuông tại C

Theo định lý Py-ta-go ta tính được \(AC = CB = 3\sqrt 2 a\)

\(T = \left( {\overrightarrow {MB} + 2\overrightarrow {MC} } \right)\,.\,\overrightarrow {CB} = \left( {\overrightarrow {MA} + \overrightarrow {AB} + 2\overrightarrow {MA} + 2\overrightarrow {AC} } \right)\,.\,\overrightarrow {CB} \)

\( = \left( {3\overrightarrow {MA} + \overrightarrow {AB} + 2\overrightarrow {AC} } \right)\,.\,\overrightarrow {CB} \)

\( = \left( {\overrightarrow {DA} + \overrightarrow {AB} + 2\overrightarrow {AC} } \right)\,.\,\overrightarrow {CB} \)

\( = \overrightarrow {DA} \,.\,\overrightarrow {CB} + \overrightarrow {AB} \,.\,\overrightarrow {CB} + 2\overrightarrow {AC} \,.\,\overrightarrow {CB} \)

\( = 3a.\,3\sqrt 2 a\,.\,\cos 45^\circ + 6a.\,3\sqrt 2 a\,.\,\cos 45^\circ + 2AC.\,CB\,.\,\cos 90^\circ \)

= 27a2

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có: cos x = − cos (180° − x) Þ cos2 x = cos2 (180° − x)

sin x = cos (90° − x)

sin2 x + cos2 x = 1

A = cos2 10° + cos2 20° + cos2 30° + ... + cos2 180°

= cos2 10° + cos2 20° + cos2 30° + ... + cos2 180°

= cos2 10° + cos2 20° + ... + cos2 80° + cos2 90° + cos2 80° + cos2 70° + ... + cos2 0°

= cos2 0° + cos2 90° + 2(cos2 10° + cos2 20° + ... + cos2 80°)

= 1 + 0 + 2(cos2 10° + cos2 20° + cos2 30° + cos2 40° + sin2 40° + sin2 30° + sin2 20° + sin2 10°)

= 1 + 0 + 2 . 4 = 9.

Lời giải

\(\overrightarrow {AC} \,.\,\overrightarrow {BD} = \left( {\overrightarrow {AD} \, + \,\overrightarrow {DC} } \right)\left( {\overrightarrow {BA} \, + \,\overrightarrow {AD} } \right)\)

\( = \overrightarrow {AD} \,.\,\overrightarrow {BA} + {\overrightarrow {AD} ^2} + \overrightarrow {DC} \,.\,\overrightarrow {BA} + \overrightarrow {DC} \,.\,\overrightarrow {AD} \)

\( = {\overrightarrow {AD} ^2} - \overrightarrow {AB} \,.\,\overrightarrow {DC} = {a^2} - a\,.\,2a = - {a^2}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP