Cho a, b, c là 3 cạnh của tam giác ABC. Biết a3(b − c) + b3(c − a) + c3(a − b) = 0. Chứng minh: tam giác ABC cân.
Cho a, b, c là 3 cạnh của tam giác ABC. Biết a3(b − c) + b3(c − a) + c3(a − b) = 0. Chứng minh: tam giác ABC cân.
Quảng cáo
Trả lời:
a3(b − c) + b3(c − a) + c3(a − b) = 0
Û a3b − a3c + b3c − ab3 + c3(a − b) = 0
Û a3b − a3c + b3c − ab3 + c3(a − b) = 0
Û ab(a2 − b2) − c(a3 − b3) + c3(a − b) = 0
Û ab(a − b)(a + b) − c(a − b)(a2 + ab + b2) + c3(a − b) = 0
Û (a − b)[ab(a + b) − c(a2 + ab + b2) + c3] = 0
Û (a − b)[ab(a + b) − c(a2 + ab + b2) + c3] = 0
Û (a − b)[ab(a + b) − ac(a + b) + b2c + c3] = 0
Û (a − b)[a(a + b)(b − c) − c(b2 − c2)] = 0
Û (a − b)[a(a + b)(b − c) − c(b − c)(b + c)] = 0
Û (a − b)(b − c)[a(a + b) − c(b + c)] = 0
Û (a − b)(b − c)[(a2 − c2) + (ab − bc)] = 0
Û (a − b)(b − c)[(a − c)(a + c) + b(a − c)] = 0
Û (a − b)(b − c)(a − c)(a + b + c) = 0
Þ (a − b)(b − c)(a − c) = 0
\( \Rightarrow \left[ \begin{array}{l}a - b = 0\\b - c = 0\\a - c = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}a = b\\b = c\\a = c\end{array} \right.\)
Vậy ABC là tam giác cân.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có: cos x = − cos (180° − x) Þ cos2 x = cos2 (180° − x)
sin x = cos (90° − x)
sin2 x + cos2 x = 1
A = cos2 10° + cos2 20° + cos2 30° + ... + cos2 180°
= cos2 10° + cos2 20° + cos2 30° + ... + cos2 180°
= cos2 10° + cos2 20° + ... + cos2 80° + cos2 90° + cos2 80° + cos2 70° + ... + cos2 0°
= cos2 0° + cos2 90° + 2(cos2 10° + cos2 20° + ... + cos2 80°)
= 1 + 0 + 2(cos2 10° + cos2 20° + cos2 30° + cos2 40° + sin2 40° + sin2 30° + sin2 20° + sin2 10°)
= 1 + 0 + 2 . 4 = 9.
Lời giải
\(\overrightarrow {AC} \,.\,\overrightarrow {BD} = \left( {\overrightarrow {AD} \, + \,\overrightarrow {DC} } \right)\left( {\overrightarrow {BA} \, + \,\overrightarrow {AD} } \right)\)
\( = \overrightarrow {AD} \,.\,\overrightarrow {BA} + {\overrightarrow {AD} ^2} + \overrightarrow {DC} \,.\,\overrightarrow {BA} + \overrightarrow {DC} \,.\,\overrightarrow {AD} \)
\( = {\overrightarrow {AD} ^2} - \overrightarrow {AB} \,.\,\overrightarrow {DC} = {a^2} - a\,.\,2a = - {a^2}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.