Câu hỏi:
13/07/2024 134Cho hình vuông ABCD có cạnh bằng a. Gọi E, F, G, H lần lượt là trung điểm của các cạnh AB, BC, CD, DA. M là giao điểm của CE và DF.
a) Chứng minh tứ giác EFGH là hình vuông.
b) Chứng minh DF ^ CE và ∆MAD cân.
c) Tính diện tích tam giác MDC theo a.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a) Xét ∆AEH và ∆BEF, có:
AE = BE (E là trung điểm AB);
AH = BF (do \(AH = \frac{1}{2}AD,\;BF = \frac{1}{2}BC\) và AD = BC);
\(\widehat {HAE} = \widehat {EBF} = 90^\circ \)
Do đó ∆AEH = ∆BEF (c.g.c).
Suy ra HE = EF (cặp cạnh tương ứng).
Chứng minh tương tự, ta được EF = GF và GH = GF.
Do đó tứ giác EFGH là hình thoi (1)
Ta có BE = BF (do \(BE = \frac{1}{2}AB,\;BF = \frac{1}{2}BC\) và AB = BC)
và \(\widehat {EBF} = 90^\circ \) (do ABCD là hình vuông).
Suy ra ∆BEF vuông cân tại B.
Do đó \(\widehat {BEF} = 45^\circ \)
Chứng minh tương tự, ta được \(\widehat {AEH} = 45^\circ \)
Ta có \(\widehat {AEH} + \widehat {HEF} + \widehat {FEB} = 180^\circ \) (kề bù).
\( \Leftrightarrow \widehat {HEF} = 180^\circ - \widehat {AEH} - \widehat {FEB} = 180^\circ - 45^\circ - 45^\circ = 90^\circ \;\left( 2 \right)\)
Từ (1), (2), suy ra tứ giác EFGH là hình vuông.
b) Xét ∆CBE và ∆DCF, có:
CB = DC (ABCD là hình vuông);
\(\widehat {CBE} = \widehat {DCF} = 90^\circ \)
BE = CF (do \(BE = \frac{1}{2}AB,\;CF = \frac{1}{2}BC\) và AB = BC).
Do đó ∆CBE = ∆DCF (c.g.c).
Suy ra \(\widehat {ECB} = \widehat {FDC}\) (cặp góc tương ứng).
Mà \(\widehat {DFC} + \widehat {FDC} = 90^\circ \) (∆DFC vuông tại C).
Do đó \(\widehat {DFC} + \widehat {ECB} = 90^\circ \)
Tam giác CFM, có: \(\widehat {CMF} = 180^\circ - \left( {\widehat {DFC} + \widehat {ECB}} \right) = 90^\circ \)
Vậy DF ^ CE tại M.
Gọi P là giao điểm của AG và DF.
Chứng minh tương tự như trên, ta được AG ^ DF tại P.
Mà CE ^ DF (chứng minh trên).
Suy ra CE // AG.
∆DMC có: G là trung điểm của DC (giả thiết) và PG // MC (chứng minh trên).
Suy ra GP là đường trung bình của ∆DMC.
Do đó P là trung điểm DM.
∆AMD có: AP vừa là đường trung tuyến, vừa là đường cao.
Vậy ∆AMD cân tại A.
c) Xét ∆DMC và ∆DCF, có:
\(\widehat {MDC}\) chung;
\(\widehat {DMC} = \widehat {DCF} = 90^\circ \)
Do đó ∆DMC ᔕ ∆DCF (g.g).
Suy ra \(\frac{{DM}}{{DC}} = \frac{{MC}}{{CF}} = \frac{{DC}}{{DF}}\) (*)
Ta có \({S_{DMC}} = \frac{1}{2}MC\,.\,MD\) và \({S_{DCF}} = \frac{1}{2}DC\,.\,CF\)
Suy ra \(\frac{{{S_{DMC}}}}{{{S_{DCF}}}} = \frac{{MC\,.\,MD}}{{DC\,.\,CF}} = \frac{{D{M^2}}}{{D{C^2}}}\)
Do đó \({S_{DMC}} = \frac{{D{M^2}}}{{D{C^2}}}.\,{S_{DCF}} = \frac{{D{M^2}}}{{D{C^2}}}.\,\frac{1}{2}CD\,.\,CF = \frac{{D{M^2}}}{{{a^2}}}\,.\,\frac{1}{2}a\,.\,\frac{a}{2} = \frac{{D{M^2}}}{4}\)
Tam giác CDF vuông tại C:
\(DF = \sqrt {D{C^2} + C{F^2}} = \sqrt {D{C^2} + {{\left( {\frac{{BC}}{2}} \right)}^2}} = \sqrt {{a^2} + {{\left( {\frac{a}{2}} \right)}^2}} = \frac{{a\sqrt 5 }}{2}\)
Từ (*), ta có: DM.DF = DC2.
\( \Leftrightarrow DM\,.\,\frac{{a\sqrt 5 }}{2} = {a^2}\)
\( \Rightarrow DM\, = \frac{{2a\sqrt 5 }}{5}\)
Vậy \({S_{DMC}} = \frac{{D{M^2}}}{4} = {\left( {\frac{{2a\sqrt 5 }}{5}} \right)^2}\,.\,\frac{1}{4} = \frac{{{a^2}}}{5}\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Rút gọn biểu thức: cos2 10° + cos2 20° + cos2 30° + ... + cos2 180°.
Câu 2:
Cho hình thang ABCD vuông tại A và D. AB = AD = a, CD = 2a. Tính \(\overrightarrow {AC} \,.\,\overrightarrow {BD} \).
Câu 3:
Có bao nhiêu số tự nhiên có 3 chữ số khác nhau. Biết tổng của 3 chữ số này là 18.
Câu 4:
Cho hình vuông ABCD có AC cắt BD tại O. M là điểm bất kỳ thuộc cạnh BC (M khác B, C). Tia AM cắt đường thẳng CD tại N. Trên cạnh AB lấy điểm E sao cho BE = CM.
a) Chứng minh: ∆OEM vuông cân.
b) Chứng minh: ME // BN.
c) Từ C kẻ CH vuông góc BN (H thuộc BN). Chứng minh rằng ba điểm O, M, H thẳng hàng.
Câu 6:
Cho tam giác ABC.
a) Hãy xác định điểm M để \(\overrightarrow {MA} + \overrightarrow {MB} + 2\overrightarrow {MC} = \overrightarrow 0 \).
b) Chứng minh rằng với mọi điểm O ta có: \(\overrightarrow {OA} + \overrightarrow {OB} + 2\overrightarrow {OC} = 4\overrightarrow {OM} \).
Câu 7:
Cho ABCD là hình bình hành. Chứng minh \(\overrightarrow {MB} - \overrightarrow {MA} = \overrightarrow {MC} - \overrightarrow {MD} \) với mỗi điểm M trong mặt phẳng.
53 câu Bài tập về Tính đơn điệu của hàm số có lời giải (P1)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
200 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát hàm số nâng cao (P1)
120 câu Bài tập Cực trị hàm số cơ bản, nâng cao có lời giải (P1)
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
250 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát hàm số cơ bản (P1)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
về câu hỏi!