Câu hỏi:

13/07/2024 1,824

Cho tam giác ABC đều cạnh a. Tính \(\left| {\overrightarrow {AB} + \overrightarrow {AI} } \right|\), I là trung điểm BC.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác ABC đều cạnh a. Tính vecto AB + vecto AI, I là trung điểm BC (ảnh 1)

Gọi M là trung điểm của BI

\( \Rightarrow MI = \frac{1}{4}BC = \frac{a}{4}\)

Ta có: \(\overrightarrow {AB} + \overrightarrow {AI} = 2\overrightarrow {AM} \)

\( \Rightarrow \left| {\overrightarrow {AB} + \overrightarrow {AI} } \right| = \left| {2\overrightarrow {AM} } \right| = 2AM\)

Xét ∆AMI có: AI ^ BC

\(AI = \frac{{AB\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{2}\)

\(MI = \frac{a}{4}\)

\( \Rightarrow AM = \sqrt {{{\left( {\frac{{a\sqrt 3 }}{2}} \right)}^2} + {{\left( {\frac{a}{4}} \right)}^2}} = \frac{{a\sqrt {13} }}{4}\)

\( \Rightarrow \left| {\overrightarrow {AB} + \overrightarrow {AI} } \right| = \left| {2\overrightarrow {AM} } \right| = \frac{{a\sqrt {13} }}{2}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có: cos x = − cos (180° − x) Þ cos2 x = cos2 (180° − x)

sin x = cos (90° − x)

sin2 x + cos2 x = 1

A = cos2 10° + cos2 20° + cos2 30° + ... + cos2 180°

= cos2 10° + cos2 20° + cos2 30° + ... + cos2 180°

= cos2 10° + cos2 20° + ... + cos2 80° + cos2 90° + cos2 80° + cos2 70° + ... + cos2 0°

= cos2 0° + cos2 90° + 2(cos2 10° + cos2 20° + ... + cos2 80°)

= 1 + 0 + 2(cos2 10° + cos2 20° + cos2 30° + cos2 40° + sin2 40° + sin2 30° + sin2 20° + sin2 10°)

= 1 + 0 + 2 . 4 = 9.

Lời giải

Gọi số tự nhiên có 3 chữ số là \(\overline {abc} \;\,\,\left( {a \ne 0;\;a \ne b \ne c} \right)\).

Theo đề, ta có a + b + c = 18

Þ (a; b; c) = {(1; 8; 9); (2; 7; 9); (3; 6; 9); (4; 5; 9); (3; 7; 8); (4; 6; 8); (5; 6; 7)}.

Vậy số tự nhiên có 3 chữ số mà tổng bằng 18 là 7.3! = 42 (số).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP