Câu hỏi:
04/07/2023 423Cho tam giác ABC đều cạnh a. Gọi H là trung điểm BC. Khẳng định nào sau đây sai?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Tam giác ABC đều cạnh a, trung điểm H của BC nên AC = AB = BC = a và \(BH = HC = \frac{a}{2}\)
Tam giác ABH vuông tại H nên
\( \Rightarrow AH = \sqrt {A{B^2} - B{H^2}} = \sqrt {{a^2} - \frac{{{a^2}}}{4}} = \frac{{a\sqrt 3 }}{2}\)
Do đó \(\left| {\overrightarrow {HB} } \right| = HB = \frac{a}{2}\) nên A đúng.
\(\left| {\overrightarrow {AH} } \right| = AH = \frac{{a\sqrt 3 }}{2}\) nên B đúng.
\(\left| {\overrightarrow {CH} } \right| = CH = \frac{a}{2}\) nên C sai.
\(\left| {\overrightarrow {BH} } \right| = \left| {\overrightarrow {HC} } \right| = \frac{a}{2}\) nên D đúng.
Đáp án cần chọn là: C
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Rút gọn biểu thức: cos2 10° + cos2 20° + cos2 30° + ... + cos2 180°.
Câu 2:
Có bao nhiêu số tự nhiên có 3 chữ số khác nhau. Biết tổng của 3 chữ số này là 18.
Câu 3:
Cho hình thang ABCD vuông tại A và D. AB = AD = a, CD = 2a. Tính \(\overrightarrow {AC} \,.\,\overrightarrow {BD} \).
Câu 4:
Cho hình vuông ABCD có AC cắt BD tại O. M là điểm bất kỳ thuộc cạnh BC (M khác B, C). Tia AM cắt đường thẳng CD tại N. Trên cạnh AB lấy điểm E sao cho BE = CM.
a) Chứng minh: ∆OEM vuông cân.
b) Chứng minh: ME // BN.
c) Từ C kẻ CH vuông góc BN (H thuộc BN). Chứng minh rằng ba điểm O, M, H thẳng hàng.
Câu 6:
Cho tam giác ABC nhọn, đường cao AH. Gọi M, N lần lượt là hình chiếu của H lên AB và AC
a) Chứng minh AM.AB = AN.AC.
b) Chứng minh tam giác AMN đồng dạng tam giác ACB.
Câu 7:
Cho tam giác ABC.
a) Hãy xác định điểm M để \(\overrightarrow {MA} + \overrightarrow {MB} + 2\overrightarrow {MC} = \overrightarrow 0 \).
b) Chứng minh rằng với mọi điểm O ta có: \(\overrightarrow {OA} + \overrightarrow {OB} + 2\overrightarrow {OC} = 4\overrightarrow {OM} \).
về câu hỏi!