Câu hỏi:
13/07/2024 160Cho hai số dương x; y thỏa mãn điều kiện x + y ≤ 1. Chứng minh:
\({x^2} - \frac{3}{{4x}} - \frac{x}{y} \le \frac{{ - 9}}{4}\)
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
\({x^2} - \frac{3}{{4x}} - \frac{x}{y} = {x^2} - \frac{{4{x^2} + 3y}}{{4xy}} \le {x^2} - \frac{{4{x^2} + 3y\left( {x + y} \right)}}{{4xy}}\)
\( \le {x^2} - \frac{{4{x^2} + 3xy + {y^2}}}{{4xy}} = {x^2} - \frac{{{x^2} + 3xy + 3\left( {{x^2} + {y^2}} \right)}}{{4xy}}\)
\( \le {x^2} - \frac{{{x^2} + 3xy + 6xy}}{{4xy}} = {x^2} - \frac{{{x^2}}}{{4xy}} - \frac{9}{4}\)
\( \le {x^2} - \frac{{{x^2}}}{{{{\left( {x + y} \right)}^2}}} - \frac{9}{4} \le {x^2} - \frac{{{x^2}}}{1} - \frac{9}{4} = - \frac{9}{4}\)
Dấu “=” xảy ra khi và chỉ khi \(x = y = \frac{1}{2}\)
Vậy \({x^2} - \frac{3}{{4x}} - \frac{x}{y} \le \frac{{ - 9}}{4}\) khi \(x = y = \frac{1}{2}\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Rút gọn biểu thức: cos2 10° + cos2 20° + cos2 30° + ... + cos2 180°.
Câu 2:
Có bao nhiêu số tự nhiên có 3 chữ số khác nhau. Biết tổng của 3 chữ số này là 18.
Câu 3:
Cho hình thang ABCD vuông tại A và D. AB = AD = a, CD = 2a. Tính \(\overrightarrow {AC} \,.\,\overrightarrow {BD} \).
Câu 4:
Cho hình vuông ABCD có AC cắt BD tại O. M là điểm bất kỳ thuộc cạnh BC (M khác B, C). Tia AM cắt đường thẳng CD tại N. Trên cạnh AB lấy điểm E sao cho BE = CM.
a) Chứng minh: ∆OEM vuông cân.
b) Chứng minh: ME // BN.
c) Từ C kẻ CH vuông góc BN (H thuộc BN). Chứng minh rằng ba điểm O, M, H thẳng hàng.
Câu 6:
Cho tam giác ABC nhọn, đường cao AH. Gọi M, N lần lượt là hình chiếu của H lên AB và AC
a) Chứng minh AM.AB = AN.AC.
b) Chứng minh tam giác AMN đồng dạng tam giác ACB.
Câu 7:
Cho tam giác ABC.
a) Hãy xác định điểm M để \(\overrightarrow {MA} + \overrightarrow {MB} + 2\overrightarrow {MC} = \overrightarrow 0 \).
b) Chứng minh rằng với mọi điểm O ta có: \(\overrightarrow {OA} + \overrightarrow {OB} + 2\overrightarrow {OC} = 4\overrightarrow {OM} \).
về câu hỏi!