Câu hỏi:

13/07/2024 186

Cho a, b, c ≥ 0 thoả mãn a + b + c = 1.

Chứng minh: \(\sqrt {5a + 4} + \sqrt {5b + 4} + \sqrt {5c + 4} \ge 7\)

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có: \(\left\{ \begin{array}{l}a,b,c \ge 0\\a + b + c = 1\end{array} \right. \Rightarrow a \le 1 \Leftrightarrow {a^2} \le a\)

\(\sqrt {5a + 4} + \sqrt {5b + 4} + \sqrt {5c + 4} \)

\( = \sqrt {a + 4a + 4} + \sqrt {b + 4b + 4} + \sqrt {c + 4c + 4} \)

\( \ge \sqrt {{a^2} + 4a + 4} + \sqrt {{b^2} + 4b + 4} + \sqrt {{c^2} + 4c + 4} \)

\[ = \sqrt {{{\left( {a + 2} \right)}^2}} + \sqrt {{{\left( {b + 2} \right)}^2}} + \sqrt {{{\left( {c + 2} \right)}^2}} \]

= a + 2 + b + 2 + c + 2

= a + b + c + 6 = 1 + 6 = 7

Dấu “=” xảy ra khi và chỉ khi a = 1, b = c = 0 và các hoán vị.

Vậy \(\sqrt {5a + 4} + \sqrt {5b + 4} + \sqrt {5c + 4} \ge 7\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Rút gọn biểu thức: cos2 10° + cos2 20° + cos2 30° + ... + cos2 180°.

Xem đáp án » 13/07/2024 33,326

Câu 2:

Cho hình thang ABCD vuông tại A và D. AB = AD = a, CD = 2a. Tính  \(\overrightarrow {AC} \,.\,\overrightarrow {BD} \).

Xem đáp án » 13/07/2024 18,980

Câu 3:

Có bao nhiêu số tự nhiên có 3 chữ số khác nhau. Biết tổng của 3 chữ số này là 18.

Xem đáp án » 13/07/2024 14,426

Câu 4:

Cho hình vuông ABCD có AC cắt BD tại O. M là điểm bất kỳ thuộc cạnh BC (M khác B, C). Tia AM cắt đường thẳng CD tại N. Trên cạnh AB lấy điểm E sao cho BE = CM.

a) Chứng minh: ∆OEM vuông cân.

b) Chứng minh: ME // BN.

c) Từ C kẻ CH vuông góc BN (H thuộc BN). Chứng minh rằng ba điểm O, M, H thẳng hàng.

Xem đáp án » 13/07/2024 10,662

Câu 5:

Hãy tính biểu thức sau: A = 2.sin 30° − 2.cos60° + tan 45°.

Xem đáp án » 13/07/2024 3,178

Câu 6:

Cho tam giác ABC.

a) Hãy xác định điểm M để \(\overrightarrow {MA} + \overrightarrow {MB} + 2\overrightarrow {MC} = \overrightarrow 0 \).

b) Chứng minh rằng với mọi điểm O ta có: \(\overrightarrow {OA} + \overrightarrow {OB} + 2\overrightarrow {OC} = 4\overrightarrow {OM} \).

Xem đáp án » 13/07/2024 2,891

Câu 7:

Cho ABCD là hình bình hành. Chứng minh \(\overrightarrow {MB} - \overrightarrow {MA} = \overrightarrow {MC} - \overrightarrow {MD} \) với mỗi điểm M trong mặt phẳng.

Xem đáp án » 13/07/2024 2,732

Bình luận


Bình luận