Câu hỏi:
13/07/2024 678
Cho 4 điểm A(1; 2) và B(−1; 4); C(2; 2); D(−3; 2). Tìm tọa độ giao điểm của 2 đường thẳng AB và CD.
Cho 4 điểm A(1; 2) và B(−1; 4); C(2; 2); D(−3; 2). Tìm tọa độ giao điểm của 2 đường thẳng AB và CD.
Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:
Phương trình đường thẳng đi qua hai điểm A(1; 2) và B(−1; 4) có dạng:
\[\frac{{x - 1}}{{ - 2}} = \frac{{y - 2}}{2} \Leftrightarrow x + y = 3\]
Phương trình đường thẳng đi qua hai điểm C(2; 2); D(−3; 2) có dạng:
y = 2
Giao điểm của 2 đường thẳng AB và CD có tọa độ là nghiệm của hệ phương trình:
\(\left\{ \begin{array}{l}x + y = 3\\y = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 1\\y = 2\end{array} \right.\)
Vậy I(1; 2) là điểm cần tìm
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có: cos x = − cos (180° − x) Þ cos2 x = cos2 (180° − x)
sin x = cos (90° − x)
sin2 x + cos2 x = 1
A = cos2 10° + cos2 20° + cos2 30° + ... + cos2 180°
= cos2 10° + cos2 20° + cos2 30° + ... + cos2 180°
= cos2 10° + cos2 20° + ... + cos2 80° + cos2 90° + cos2 80° + cos2 70° + ... + cos2 0°
= cos2 0° + cos2 90° + 2(cos2 10° + cos2 20° + ... + cos2 80°)
= 1 + 0 + 2(cos2 10° + cos2 20° + cos2 30° + cos2 40° + sin2 40° + sin2 30° + sin2 20° + sin2 10°)
= 1 + 0 + 2 . 4 = 9.
Lời giải
Gọi số tự nhiên có 3 chữ số là \(\overline {abc} \;\,\,\left( {a \ne 0;\;a \ne b \ne c} \right)\).
Theo đề, ta có a + b + c = 18
Þ (a; b; c) = {(1; 8; 9); (2; 7; 9); (3; 6; 9); (4; 5; 9); (3; 7; 8); (4; 6; 8); (5; 6; 7)}.
Vậy số tự nhiên có 3 chữ số mà tổng bằng 18 là 7.3! = 42 (số).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.