Câu hỏi:
13/07/2024 319
Cho hình chữ nhật ABCD. Vẽ điểm E đối xứng với B qua điểm C; vẽ F đối xứng với điểm D qua C.
a) Chứng minh tứ giác BDEF là hình thoi.
b) Chứng minh AC = DE.
c) Gọi H là trung điểm của CD, K là trung điểm của EF. Chứng minh HK // AC.
d) Biết diện tích tam giác AEF bằng 30 cm2. Tính diện tích hình chữ nhật ABCD.
Cho hình chữ nhật ABCD. Vẽ điểm E đối xứng với B qua điểm C; vẽ F đối xứng với điểm D qua C.
a) Chứng minh tứ giác BDEF là hình thoi.
b) Chứng minh AC = DE.
c) Gọi H là trung điểm của CD, K là trung điểm của EF. Chứng minh HK // AC.
d) Biết diện tích tam giác AEF bằng 30 cm2. Tính diện tích hình chữ nhật ABCD.Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:

a) Xét tứ giác BDEF, ta có:
C là trung điểm của BE (vì E đối xứng B qua C)
C là trung điểm của DF (vì F đối xứng D qua C)
Nên tứ giác BDEF là hình bình hành
Lại có BE ^ DF tại C (vì ABCD là hình chữ nhật)
Vậy BDEF là hình thoi
b) Ta có AC = BD (vì ABCD là hình chữ nhật)
Mà BD = DE (vì BDEF là hình thoi)
Vậy AC = DE
c) Ta có AD = BC (vì ABCD là hình chữ nhật)
Mà BC = CE (vì E đối xứng B qua C)
Nên AD = CE
Xét tứ giác ADEC, ta có:
AC = DE(cmt)
AD = CE(cmt)
Nên tứ giác ADEC là hình bình hành
Lại có H là trung điểm của CD
Do đó H cũng là trung điểm của AE
Xét ∆AEF, ta có:
H là trung điểm của AE (cmt)
K là trung điểm của EF (gt)
Nên HK là đường trung bình của ∆AEF
Do đó HK // AF
d) Ta có S∆AEF = S∆AHF + S∆EHF
\( \Rightarrow 30 = \frac{1}{2}AD\,.\,HF + \frac{1}{2}EC\,.\,HF\)
\( \Rightarrow \frac{1}{2}HF\,.\,\left( {AD + EC} \right) = 30\)
Þ HF.(AD + AD) = 60
Þ 2HF.AD = 60
\( \Rightarrow 2\,.\,\frac{3}{2}CD\,.\,AD = 60\)
Þ CD.AC = 20
Þ SABCD = 20 (cm2)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có: cos x = − cos (180° − x) Þ cos2 x = cos2 (180° − x)
sin x = cos (90° − x)
sin2 x + cos2 x = 1
A = cos2 10° + cos2 20° + cos2 30° + ... + cos2 180°
= cos2 10° + cos2 20° + cos2 30° + ... + cos2 180°
= cos2 10° + cos2 20° + ... + cos2 80° + cos2 90° + cos2 80° + cos2 70° + ... + cos2 0°
= cos2 0° + cos2 90° + 2(cos2 10° + cos2 20° + ... + cos2 80°)
= 1 + 0 + 2(cos2 10° + cos2 20° + cos2 30° + cos2 40° + sin2 40° + sin2 30° + sin2 20° + sin2 10°)
= 1 + 0 + 2 . 4 = 9.
Lời giải
Gọi số tự nhiên có 3 chữ số là \(\overline {abc} \;\,\,\left( {a \ne 0;\;a \ne b \ne c} \right)\).
Theo đề, ta có a + b + c = 18
Þ (a; b; c) = {(1; 8; 9); (2; 7; 9); (3; 6; 9); (4; 5; 9); (3; 7; 8); (4; 6; 8); (5; 6; 7)}.
Vậy số tự nhiên có 3 chữ số mà tổng bằng 18 là 7.3! = 42 (số).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.