Câu hỏi:
13/07/2024 2,231Cho hình chữ nhật ABCD. Gọi E là điểm đối xứng của B và C.
a) Chứng minh tứ giác ACED là hình bình hành.
b) Gọi M là trung điểm của BC. Tia AM cắt tia DC tại F. Chứng minh tứ giác BDEF là hình thoi.
c) Gọi I là giao điểm của AE và DC. Tia BI cắt tia DE tại . Chứng minh \(KI = \frac{1}{6}AE.\)
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a) Ta có: E là điểm đối xứng với B qua C
Suy ra C là trung điểm của BE nên BC = EC
Xét tứ giác ACED ta có:
AD // EC (AD // BC)
AD = CE (= BC)
Suy ra ACED là hình bình hành.
b) Xét ∆ABM và ∆FCM ta có:
\[\widehat {ABM} = \widehat {FCM} = 90^\circ \]
MB = MC (gt)
\(\widehat {AMB} = \widehat {CMF}\) (Hai góc đối đỉnh)
Þ ∆ABM = ∆FCM (g.c.g)
Þ AB = CF (hai cạnh tương ứng)
Mà AB = DC (gt) Þ DC =F
Xét tứ giác BDEF ta có:
BE ^ DF
BE Ç DF = C
C là trung điểm của BE và DF
Þ BDEF là hình thoi
c) Gọi AC Ç BD = H; AI Ç BD = O
Ta có: ACED là hình bình hành
Mà AE Ç CD = I
Þ I là trung điểm của CD
Lại có O là trung điểm của AC
Þ H là trực tâm của ∆ACD
\( \Rightarrow \frac{{IH}}{{AI}} = \frac{1}{3}\)
Mà I là trung điểm của AE \( \Rightarrow AI = \frac{1}{2}AE \Rightarrow IH = \frac{1}{6}AE\)
Ta có: BDEF là hình thoi
Þ DF là tia phân giác của \(\widehat {BDE}\) (tính chất hình thoi)
\( \Rightarrow \widehat {BDC} = \widehat {CDE}\)
Ta có BDEF là hình thoi
Þ BD = DE (hai cạnh bên)
Xét ∆BDI và ∆EDI ta có:
DI chung
\(\widehat {IDB} = \widehat {IDE}\) (cmt)
BD = DE (cmt)
Þ ∆BDI = ∆EDI (c.g.c)
\( \Rightarrow \widehat {DBI} = \widehat {DEI}\) (hai góc tương ứng)
Và IE = IB (hai cạnh tương ứng)
Xét ∆HBI và ∆KEI ta có:
\(\widehat {HBI} = \widehat {KEI}\) (cmt)
IE = IB (cmt)
\(\widehat {HIB} = \widehat {KIE}\) (hai góc đối đỉnh)
Do đó ∆HBI = ∆KEI (g.c.g)
Suy ra HI = IK (hai cạnh tương ứng).
Vậy \(IK = \frac{1}{6}AE\) (đpcm)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Rút gọn biểu thức: cos2 10° + cos2 20° + cos2 30° + ... + cos2 180°.
Câu 2:
Cho hình thang ABCD vuông tại A và D. AB = AD = a, CD = 2a. Tính \(\overrightarrow {AC} \,.\,\overrightarrow {BD} \).
Câu 3:
Có bao nhiêu số tự nhiên có 3 chữ số khác nhau. Biết tổng của 3 chữ số này là 18.
Câu 4:
Cho hình vuông ABCD có AC cắt BD tại O. M là điểm bất kỳ thuộc cạnh BC (M khác B, C). Tia AM cắt đường thẳng CD tại N. Trên cạnh AB lấy điểm E sao cho BE = CM.
a) Chứng minh: ∆OEM vuông cân.
b) Chứng minh: ME // BN.
c) Từ C kẻ CH vuông góc BN (H thuộc BN). Chứng minh rằng ba điểm O, M, H thẳng hàng.
Câu 6:
Cho tam giác ABC.
a) Hãy xác định điểm M để \(\overrightarrow {MA} + \overrightarrow {MB} + 2\overrightarrow {MC} = \overrightarrow 0 \).
b) Chứng minh rằng với mọi điểm O ta có: \(\overrightarrow {OA} + \overrightarrow {OB} + 2\overrightarrow {OC} = 4\overrightarrow {OM} \).
Câu 7:
Cho ABCD là hình bình hành. Chứng minh \(\overrightarrow {MB} - \overrightarrow {MA} = \overrightarrow {MC} - \overrightarrow {MD} \) với mỗi điểm M trong mặt phẳng.
53 câu Bài tập về Tính đơn điệu của hàm số có lời giải (P1)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
200 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát hàm số nâng cao (P1)
120 câu Bài tập Cực trị hàm số cơ bản, nâng cao có lời giải (P1)
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
250 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát hàm số cơ bản (P1)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
về câu hỏi!