Cho hình chữ nhật ABCD. Gọi E là điểm đối xứng của B và C.
a) Chứng minh tứ giác ACED là hình bình hành.
b) Gọi M là trung điểm của BC. Tia AM cắt tia DC tại F. Chứng minh tứ giác BDEF là hình thoi.
c) Gọi I là giao điểm của AE và DC. Tia BI cắt tia DE tại . Chứng minh \(KI = \frac{1}{6}AE.\)
Cho hình chữ nhật ABCD. Gọi E là điểm đối xứng của B và C.
a) Chứng minh tứ giác ACED là hình bình hành.
b) Gọi M là trung điểm của BC. Tia AM cắt tia DC tại F. Chứng minh tứ giác BDEF là hình thoi.
c) Gọi I là giao điểm của AE và DC. Tia BI cắt tia DE tại . Chứng minh \(KI = \frac{1}{6}AE.\)
Quảng cáo
Trả lời:

a) Ta có: E là điểm đối xứng với B qua C
Suy ra C là trung điểm của BE nên BC = EC
Xét tứ giác ACED ta có:
AD // EC (AD // BC)
AD = CE (= BC)
Suy ra ACED là hình bình hành.
b) Xét ∆ABM và ∆FCM ta có:
\[\widehat {ABM} = \widehat {FCM} = 90^\circ \]
MB = MC (gt)
\(\widehat {AMB} = \widehat {CMF}\) (Hai góc đối đỉnh)
Þ ∆ABM = ∆FCM (g.c.g)
Þ AB = CF (hai cạnh tương ứng)
Mà AB = DC (gt) Þ DC =F
Xét tứ giác BDEF ta có:
BE ^ DF
BE Ç DF = C
C là trung điểm của BE và DF
Þ BDEF là hình thoi
c) Gọi AC Ç BD = H; AI Ç BD = O
Ta có: ACED là hình bình hành
Mà AE Ç CD = I
Þ I là trung điểm của CD
Lại có O là trung điểm của AC
Þ H là trực tâm của ∆ACD
\( \Rightarrow \frac{{IH}}{{AI}} = \frac{1}{3}\)
Mà I là trung điểm của AE \( \Rightarrow AI = \frac{1}{2}AE \Rightarrow IH = \frac{1}{6}AE\)
Ta có: BDEF là hình thoi
Þ DF là tia phân giác của \(\widehat {BDE}\) (tính chất hình thoi)
\( \Rightarrow \widehat {BDC} = \widehat {CDE}\)
Ta có BDEF là hình thoi
Þ BD = DE (hai cạnh bên)
Xét ∆BDI và ∆EDI ta có:
DI chung
\(\widehat {IDB} = \widehat {IDE}\) (cmt)
BD = DE (cmt)
Þ ∆BDI = ∆EDI (c.g.c)
\( \Rightarrow \widehat {DBI} = \widehat {DEI}\) (hai góc tương ứng)
Và IE = IB (hai cạnh tương ứng)
Xét ∆HBI và ∆KEI ta có:
\(\widehat {HBI} = \widehat {KEI}\) (cmt)
IE = IB (cmt)
\(\widehat {HIB} = \widehat {KIE}\) (hai góc đối đỉnh)
Do đó ∆HBI = ∆KEI (g.c.g)
Suy ra HI = IK (hai cạnh tương ứng).
Vậy \(IK = \frac{1}{6}AE\) (đpcm)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có: cos x = − cos (180° − x) Þ cos2 x = cos2 (180° − x)
sin x = cos (90° − x)
sin2 x + cos2 x = 1
A = cos2 10° + cos2 20° + cos2 30° + ... + cos2 180°
= cos2 10° + cos2 20° + cos2 30° + ... + cos2 180°
= cos2 10° + cos2 20° + ... + cos2 80° + cos2 90° + cos2 80° + cos2 70° + ... + cos2 0°
= cos2 0° + cos2 90° + 2(cos2 10° + cos2 20° + ... + cos2 80°)
= 1 + 0 + 2(cos2 10° + cos2 20° + cos2 30° + cos2 40° + sin2 40° + sin2 30° + sin2 20° + sin2 10°)
= 1 + 0 + 2 . 4 = 9.
Lời giải
Gọi số tự nhiên có 3 chữ số là \(\overline {abc} \;\,\,\left( {a \ne 0;\;a \ne b \ne c} \right)\).
Theo đề, ta có a + b + c = 18
Þ (a; b; c) = {(1; 8; 9); (2; 7; 9); (3; 6; 9); (4; 5; 9); (3; 7; 8); (4; 6; 8); (5; 6; 7)}.
Vậy số tự nhiên có 3 chữ số mà tổng bằng 18 là 7.3! = 42 (số).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.