Câu hỏi:

19/08/2025 1,536 Lưu

Cho hình bình hành ABCD có \[\widehat A = \;\alpha \; > \;90^\circ \]. Ở phía ngoài hình bình hành vẽ các tam giác đều ADF, ABE. Chứng minh rằng tam giác CEF là tam giác đều.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Cho hình bình hành ABCD có góc A = alpha > 90 độ. Ở phía ngoài hình bình hành (ảnh 1)

Ta có: \(\widehat {BAD} + \widehat {ADC} = 180^\circ \) (hai góc trong cùng phía bù nhau)

\( \Rightarrow \widehat {ADC} = 180^\circ - \widehat {BAD} = 180^\circ - \alpha \)

\(\widehat {CDF} = \widehat {ADC} + \widehat {ADF} = 180^\circ - \alpha + 60^\circ = 240^\circ - \alpha \)

Suy ra: \(\widehat {CDF} = \widehat {EAF}\)

 Xét ∆AEF và ∆DCF:

AF = DF (Vì ∆ADF đều)

AE = DC (vì cùng bằng AB)

\(\widehat {CDF} = \widehat {EAF}\) (chứng minh trên)

Do đó: ∆AEF = ∆DCF (c.g.c) Þ EF = CF (1)

\(\widehat {CBE} = \widehat {ABC} + 60^\circ = 180^\circ - \alpha + 60^\circ = 240^\circ - \alpha \)

Xét ∆BCE và ∆DFC: BE = CD ( vì cùng bằng AB)

\(\widehat {CBE} = \widehat {CDF} = 240^\circ - \alpha \)

BC = DF (vì cùng bằng AD)

Do đó ∆BCE = ∆DFC (c.g.c) Þ CE = CF (2)

Từ (1) và (2) suy ra: EF = CF = CE

Vậy ∆ECF đều.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có: cos x = − cos (180° − x) Þ cos2 x = cos2 (180° − x)

sin x = cos (90° − x)

sin2 x + cos2 x = 1

A = cos2 10° + cos2 20° + cos2 30° + ... + cos2 180°

= cos2 10° + cos2 20° + cos2 30° + ... + cos2 180°

= cos2 10° + cos2 20° + ... + cos2 80° + cos2 90° + cos2 80° + cos2 70° + ... + cos2 0°

= cos2 0° + cos2 90° + 2(cos2 10° + cos2 20° + ... + cos2 80°)

= 1 + 0 + 2(cos2 10° + cos2 20° + cos2 30° + cos2 40° + sin2 40° + sin2 30° + sin2 20° + sin2 10°)

= 1 + 0 + 2 . 4 = 9.

Lời giải

\(\overrightarrow {AC} \,.\,\overrightarrow {BD} = \left( {\overrightarrow {AD} \, + \,\overrightarrow {DC} } \right)\left( {\overrightarrow {BA} \, + \,\overrightarrow {AD} } \right)\)

\( = \overrightarrow {AD} \,.\,\overrightarrow {BA} + {\overrightarrow {AD} ^2} + \overrightarrow {DC} \,.\,\overrightarrow {BA} + \overrightarrow {DC} \,.\,\overrightarrow {AD} \)

\( = {\overrightarrow {AD} ^2} - \overrightarrow {AB} \,.\,\overrightarrow {DC} = {a^2} - a\,.\,2a = - {a^2}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP