Cho hình bình hành ABCD có \[\widehat A = \;\alpha \; > \;90^\circ \]. Ở phía ngoài hình bình hành vẽ các tam giác đều ADF, ABE. Chứng minh rằng tam giác CEF là tam giác đều.
Cho hình bình hành ABCD có \[\widehat A = \;\alpha \; > \;90^\circ \]. Ở phía ngoài hình bình hành vẽ các tam giác đều ADF, ABE. Chứng minh rằng tam giác CEF là tam giác đều.
Quảng cáo
Trả lời:
Ta có: \(\widehat {BAD} + \widehat {ADC} = 180^\circ \) (hai góc trong cùng phía bù nhau)
\( \Rightarrow \widehat {ADC} = 180^\circ - \widehat {BAD} = 180^\circ - \alpha \)
\(\widehat {CDF} = \widehat {ADC} + \widehat {ADF} = 180^\circ - \alpha + 60^\circ = 240^\circ - \alpha \)
Suy ra: \(\widehat {CDF} = \widehat {EAF}\)
Xét ∆AEF và ∆DCF:
AF = DF (Vì ∆ADF đều)
AE = DC (vì cùng bằng AB)
\(\widehat {CDF} = \widehat {EAF}\) (chứng minh trên)
Do đó: ∆AEF = ∆DCF (c.g.c) Þ EF = CF (1)
\(\widehat {CBE} = \widehat {ABC} + 60^\circ = 180^\circ - \alpha + 60^\circ = 240^\circ - \alpha \)
Xét ∆BCE và ∆DFC: BE = CD ( vì cùng bằng AB)
\(\widehat {CBE} = \widehat {CDF} = 240^\circ - \alpha \)
BC = DF (vì cùng bằng AD)
Do đó ∆BCE = ∆DFC (c.g.c) Þ CE = CF (2)
Từ (1) và (2) suy ra: EF = CF = CE
Vậy ∆ECF đều.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có: cos x = − cos (180° − x) Þ cos2 x = cos2 (180° − x)
sin x = cos (90° − x)
sin2 x + cos2 x = 1
A = cos2 10° + cos2 20° + cos2 30° + ... + cos2 180°
= cos2 10° + cos2 20° + cos2 30° + ... + cos2 180°
= cos2 10° + cos2 20° + ... + cos2 80° + cos2 90° + cos2 80° + cos2 70° + ... + cos2 0°
= cos2 0° + cos2 90° + 2(cos2 10° + cos2 20° + ... + cos2 80°)
= 1 + 0 + 2(cos2 10° + cos2 20° + cos2 30° + cos2 40° + sin2 40° + sin2 30° + sin2 20° + sin2 10°)
= 1 + 0 + 2 . 4 = 9.
Lời giải
\(\overrightarrow {AC} \,.\,\overrightarrow {BD} = \left( {\overrightarrow {AD} \, + \,\overrightarrow {DC} } \right)\left( {\overrightarrow {BA} \, + \,\overrightarrow {AD} } \right)\)
\( = \overrightarrow {AD} \,.\,\overrightarrow {BA} + {\overrightarrow {AD} ^2} + \overrightarrow {DC} \,.\,\overrightarrow {BA} + \overrightarrow {DC} \,.\,\overrightarrow {AD} \)
\( = {\overrightarrow {AD} ^2} - \overrightarrow {AB} \,.\,\overrightarrow {DC} = {a^2} - a\,.\,2a = - {a^2}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.