Câu hỏi:

13/07/2024 565

Chứng minh các biểu thức sau không phụ thuộc vào x, y, z.

a) \(\frac{{x - y}}{{xy}} + \frac{{y - z}}{{yz}} + \frac{{z - x}}{{zx}}\);

b) \(\frac{1}{{\left( {x - y} \right)\left( {y - z} \right)}} - \frac{1}{{\left( {x - z} \right)\left( {y - z} \right)}} - \frac{1}{{\left( {x - y} \right)\left( {x - z} \right)}}\).

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) \(\frac{{x - y}}{{xy}} + \frac{{y - z}}{{yz}} + \frac{{z - x}}{{zx}}\)

\( = \frac{{\left( {x - y} \right)z}}{{xyz}} + \frac{{\left( {y - z} \right)x}}{{xyz}} + \frac{{\left( {z - x} \right)y}}{{xyz}}\)

\( = \frac{{xz - yz}}{{xyz}} + \frac{{xy - xz}}{{xyz}} + \frac{{yz - xy}}{{xyz}}\)

\( = \frac{{xz - yz + xy - xz + yz - xy}}{{xyz}}\)

\( = \frac{0}{{xyz}} = 0\)

Vậy biểu thức trên không phụ thuộc vào x, y, z.

b) \(\frac{1}{{\left( {x - y} \right)\left( {y - z} \right)}} - \frac{1}{{\left( {x - z} \right)\left( {y - z} \right)}} - \frac{1}{{\left( {x - y} \right)\left( {x - z} \right)}}\)

\( = \frac{{x - z}}{{\left( {x - y} \right)\left( {y - z} \right)\left( {x - z} \right)}} - \frac{{x - y}}{{\left( {x - z} \right)\left( {y - z} \right)\left( {x - y} \right)}} - \frac{{y - z}}{{\left( {x - y} \right)\left( {x - z} \right)\left( {y - z} \right)}}\)

\( = \frac{{\left( {x - z} \right) - \left( {x - y} \right) - \left( {y - z} \right)}}{{\left( {x - y} \right)\left( {y - z} \right)\left( {x - z} \right)}}\)

\( = \frac{{x - z - x + y - y + z}}{{\left( {x - y} \right)\left( {y - z} \right)\left( {x - z} \right)}}\)

\( = \frac{0}{{\left( {x - y} \right)\left( {y - z} \right)\left( {x - z} \right)}} = 0\)

Vậy biểu thức trên không phụ thuộc vào x, y, z.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Rút gọn biểu thức: cos2 10° + cos2 20° + cos2 30° + ... + cos2 180°.

Xem đáp án » 13/07/2024 33,326

Câu 2:

Cho hình thang ABCD vuông tại A và D. AB = AD = a, CD = 2a. Tính  \(\overrightarrow {AC} \,.\,\overrightarrow {BD} \).

Xem đáp án » 13/07/2024 18,980

Câu 3:

Có bao nhiêu số tự nhiên có 3 chữ số khác nhau. Biết tổng của 3 chữ số này là 18.

Xem đáp án » 13/07/2024 14,426

Câu 4:

Cho hình vuông ABCD có AC cắt BD tại O. M là điểm bất kỳ thuộc cạnh BC (M khác B, C). Tia AM cắt đường thẳng CD tại N. Trên cạnh AB lấy điểm E sao cho BE = CM.

a) Chứng minh: ∆OEM vuông cân.

b) Chứng minh: ME // BN.

c) Từ C kẻ CH vuông góc BN (H thuộc BN). Chứng minh rằng ba điểm O, M, H thẳng hàng.

Xem đáp án » 13/07/2024 10,662

Câu 5:

Hãy tính biểu thức sau: A = 2.sin 30° − 2.cos60° + tan 45°.

Xem đáp án » 13/07/2024 3,179

Câu 6:

Cho tam giác ABC.

a) Hãy xác định điểm M để \(\overrightarrow {MA} + \overrightarrow {MB} + 2\overrightarrow {MC} = \overrightarrow 0 \).

b) Chứng minh rằng với mọi điểm O ta có: \(\overrightarrow {OA} + \overrightarrow {OB} + 2\overrightarrow {OC} = 4\overrightarrow {OM} \).

Xem đáp án » 13/07/2024 2,891

Câu 7:

Cho ABCD là hình bình hành. Chứng minh \(\overrightarrow {MB} - \overrightarrow {MA} = \overrightarrow {MC} - \overrightarrow {MD} \) với mỗi điểm M trong mặt phẳng.

Xem đáp án » 13/07/2024 2,732

Bình luận


Bình luận