Câu hỏi:

13/07/2024 1,129

Tìm số nguyên x để giá trị mỗi phân thức sau là số nguyên \(\frac{7}{{{x^2} - x + 1}}\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Để \(\frac{7}{{{x^2} - x + 1}} \in \mathbb{Z}\)

Þ 7 x2 − x + 1

Þ x2 − x + 1 Î Ư(7) = {±1; ±7}

Mà x2 − x + 1

\( = {x^2} - 2x\,.\,\frac{1}{2} + \frac{1}{4} + \frac{3}{4}\)

\( = {\left( {x - \frac{1}{2}} \right)^2} + \frac{3}{4} \ge \frac{3}{4} > 0\)

Þ x2 − x + 1 Î {1; 7}

x2 − x + 1 = 1

Û x2 − x = 0

\( \Rightarrow \left[ \begin{array}{l}x = 0\\x = 1\end{array} \right.\)

x2 − x + 1 = 7

Û x2 − x − 6 = 0

Û (x + 2)(x − 3) = 0\

\( \Rightarrow \left[ \begin{array}{l}x = - 2\\x = 3\end{array} \right.\)

Vậy với x Î {0; 1; −2; 3} thì \(\frac{7}{{{x^2} - x + 1}} \in \mathbb{Z}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có: cos x = − cos (180° − x) Þ cos2 x = cos2 (180° − x)

sin x = cos (90° − x)

sin2 x + cos2 x = 1

A = cos2 10° + cos2 20° + cos2 30° + ... + cos2 180°

= cos2 10° + cos2 20° + cos2 30° + ... + cos2 180°

= cos2 10° + cos2 20° + ... + cos2 80° + cos2 90° + cos2 80° + cos2 70° + ... + cos2 0°

= cos2 0° + cos2 90° + 2(cos2 10° + cos2 20° + ... + cos2 80°)

= 1 + 0 + 2(cos2 10° + cos2 20° + cos2 30° + cos2 40° + sin2 40° + sin2 30° + sin2 20° + sin2 10°)

= 1 + 0 + 2 . 4 = 9.

Lời giải

Gọi số tự nhiên có 3 chữ số là \(\overline {abc} \;\,\,\left( {a \ne 0;\;a \ne b \ne c} \right)\).

Theo đề, ta có a + b + c = 18

Þ (a; b; c) = {(1; 8; 9); (2; 7; 9); (3; 6; 9); (4; 5; 9); (3; 7; 8); (4; 6; 8); (5; 6; 7)}.

Vậy số tự nhiên có 3 chữ số mà tổng bằng 18 là 7.3! = 42 (số).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP