Câu hỏi:

19/08/2025 1,653 Lưu

Tìm số nguyên x để giá trị mỗi phân thức sau là số nguyên \(\frac{7}{{{x^2} - x + 1}}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Để \(\frac{7}{{{x^2} - x + 1}} \in \mathbb{Z}\)

Þ 7 x2 − x + 1

Þ x2 − x + 1 Î Ư(7) = {±1; ±7}

Mà x2 − x + 1

\( = {x^2} - 2x\,.\,\frac{1}{2} + \frac{1}{4} + \frac{3}{4}\)

\( = {\left( {x - \frac{1}{2}} \right)^2} + \frac{3}{4} \ge \frac{3}{4} > 0\)

Þ x2 − x + 1 Î {1; 7}

x2 − x + 1 = 1

Û x2 − x = 0

\( \Rightarrow \left[ \begin{array}{l}x = 0\\x = 1\end{array} \right.\)

x2 − x + 1 = 7

Û x2 − x − 6 = 0

Û (x + 2)(x − 3) = 0\

\( \Rightarrow \left[ \begin{array}{l}x = - 2\\x = 3\end{array} \right.\)

Vậy với x Î {0; 1; −2; 3} thì \(\frac{7}{{{x^2} - x + 1}} \in \mathbb{Z}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có: cos x = − cos (180° − x) Þ cos2 x = cos2 (180° − x)

sin x = cos (90° − x)

sin2 x + cos2 x = 1

A = cos2 10° + cos2 20° + cos2 30° + ... + cos2 180°

= cos2 10° + cos2 20° + cos2 30° + ... + cos2 180°

= cos2 10° + cos2 20° + ... + cos2 80° + cos2 90° + cos2 80° + cos2 70° + ... + cos2 0°

= cos2 0° + cos2 90° + 2(cos2 10° + cos2 20° + ... + cos2 80°)

= 1 + 0 + 2(cos2 10° + cos2 20° + cos2 30° + cos2 40° + sin2 40° + sin2 30° + sin2 20° + sin2 10°)

= 1 + 0 + 2 . 4 = 9.

Lời giải

\(\overrightarrow {AC} \,.\,\overrightarrow {BD} = \left( {\overrightarrow {AD} \, + \,\overrightarrow {DC} } \right)\left( {\overrightarrow {BA} \, + \,\overrightarrow {AD} } \right)\)

\( = \overrightarrow {AD} \,.\,\overrightarrow {BA} + {\overrightarrow {AD} ^2} + \overrightarrow {DC} \,.\,\overrightarrow {BA} + \overrightarrow {DC} \,.\,\overrightarrow {AD} \)

\( = {\overrightarrow {AD} ^2} - \overrightarrow {AB} \,.\,\overrightarrow {DC} = {a^2} - a\,.\,2a = - {a^2}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP