Câu hỏi:

19/08/2025 509 Lưu

Cho tứ giác ABCD có là góc nhọn tạo bởi hai đường chéo chứng minh rằng \({S_{ABCD}} = \frac{1}{2}AC\,.\,BD\,.\,\sin \alpha \).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Cho tứ giác ABCD có là góc nhọn tạo bởi hai đường chéo chứng minh rằng  (ảnh 1)

Ta có: sin α = sin (180° − α)

SABCD = SIAB + SIBC + SICD + SIDA

\( = \frac{1}{2}IA\,.\,IB\,.\,\sin \widehat {AIB} + \frac{1}{2}IB\,.\,IC\,.\,\sin \widehat {BIC} + \frac{1}{2}IC\,.\,ID\,.\,\sin \widehat {CID} + \frac{1}{2}ID\,.\,IA\,.\,\sin \widehat {DIA}\)

\( = \frac{1}{2}IA\,.\,IB\,.\,\sin \alpha + \frac{1}{2}IB\,.\,IC\,.\,\sin \alpha + \frac{1}{2}IC\,.\,ID\,.\,\sin \alpha + \frac{1}{2}ID\,.\,IA\,.\,\sin \alpha \)

\( = \frac{1}{2}\sin \alpha \left( {IA\,.\,IB\, + IB\,.\,IC\, + IC\,.\,ID\, + ID\,.\,IA} \right)\)

\[ = \frac{1}{2}\sin \alpha \left[ {IB\,\left( {IA\, + IC} \right)\, + ID\,\left( {IA\, + IC} \right)\,} \right]\]

\[ = \frac{1}{2}\sin \alpha \left( {IB + ID} \right)\left( {IA\, + IC} \right)\]

\[ = \frac{1}{2}AC\,.\,BD\,.\,\sin \alpha \] (đpcm)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có: cos x = − cos (180° − x) Þ cos2 x = cos2 (180° − x)

sin x = cos (90° − x)

sin2 x + cos2 x = 1

A = cos2 10° + cos2 20° + cos2 30° + ... + cos2 180°

= cos2 10° + cos2 20° + cos2 30° + ... + cos2 180°

= cos2 10° + cos2 20° + ... + cos2 80° + cos2 90° + cos2 80° + cos2 70° + ... + cos2 0°

= cos2 0° + cos2 90° + 2(cos2 10° + cos2 20° + ... + cos2 80°)

= 1 + 0 + 2(cos2 10° + cos2 20° + cos2 30° + cos2 40° + sin2 40° + sin2 30° + sin2 20° + sin2 10°)

= 1 + 0 + 2 . 4 = 9.

Lời giải

\(\overrightarrow {AC} \,.\,\overrightarrow {BD} = \left( {\overrightarrow {AD} \, + \,\overrightarrow {DC} } \right)\left( {\overrightarrow {BA} \, + \,\overrightarrow {AD} } \right)\)

\( = \overrightarrow {AD} \,.\,\overrightarrow {BA} + {\overrightarrow {AD} ^2} + \overrightarrow {DC} \,.\,\overrightarrow {BA} + \overrightarrow {DC} \,.\,\overrightarrow {AD} \)

\( = {\overrightarrow {AD} ^2} - \overrightarrow {AB} \,.\,\overrightarrow {DC} = {a^2} - a\,.\,2a = - {a^2}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP