Câu hỏi:

12/07/2024 16,115

Cho tam giác ABC. Gọi I là điểm trên cạnh BC sao cho 2CI = 3BI và J là điểm trên BC kéo dài sao cho 5JB = 2JC. Gọi G là trọng tâm tam giác.

a) Biểu diễn \(\overrightarrow {AB} ,\overrightarrow {AC} \) theo hai vectơ \(\overrightarrow {AI} ,\overrightarrow {AJ} \) và biểu diễn \(\overrightarrow {AJ} \) qua \(\overrightarrow {AB} ,\overrightarrow {AC} \).

b) Biểu diễn \(\overrightarrow {AG} \) theo hai vectơ \(\overrightarrow {AI} ,\overrightarrow {AJ} \).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Media VietJack

a) Ta có I là điểm trên cạnh BC sao cho 2CI = 3BI.

\( \Rightarrow \frac{{BI}}{{CI}} = \frac{2}{3}\).

\( \Rightarrow \frac{{BI}}{{BC}} = \frac{2}{5}\).

\( \Rightarrow BI = \frac{2}{5}BC\).

Chứng minh tương tự, ta được: \(IC = \frac{3}{5}BC\).

Lại có J là điểm trên BC kéo dài sao cho 5JB = 2JC.

\( \Rightarrow \frac{{JB}}{{IC}} = \frac{2}{5}\).

\( \Rightarrow \frac{{JB}}{{BC}} = \frac{2}{3}\).

\( \Rightarrow JB = \frac{2}{3}BC\) và \(BC = \frac{3}{5}JC\).

Ta có \(\overrightarrow {AB} = \overrightarrow {AI} + \overrightarrow {IB} = \overrightarrow {AI} - \frac{2}{5}\overrightarrow {BC} = \overrightarrow {AI} - \frac{2}{5}.\frac{3}{2}\overrightarrow {JB} = \overrightarrow {AI} - \frac{3}{5}\overrightarrow {JB} \).

\( = \overrightarrow {AI} - \frac{3}{5}\left( {\overrightarrow {JA} + \overrightarrow {AB} } \right) = \overrightarrow {AI} + \frac{3}{5}\overrightarrow {AJ} - \frac{3}{5}\overrightarrow {AB} \).

Suy ra \(\overrightarrow {AB} + \frac{3}{5}\overrightarrow {AB} = \overrightarrow {AI} + \frac{3}{5}\overrightarrow {AJ} \).

Do đó \(\overrightarrow {AB} = \frac{5}{8}\overrightarrow {AI} + \frac{3}{8}\overrightarrow {AJ} \)            (1)

Ta có \(\overrightarrow {AC} = \overrightarrow {AI} + \overrightarrow {IC} = \overrightarrow {AI} + \frac{3}{5}\overrightarrow {BC} = \overrightarrow {AI} + \frac{3}{5}.\frac{3}{5}\overrightarrow {JC} = \overrightarrow {AI} + \frac{9}{{25}}\left( {\overrightarrow {JA} + \overrightarrow {AC} } \right)\).

Suy ra \(\overrightarrow {AC} - \frac{9}{{25}}\overrightarrow {AC} = \overrightarrow {AI} - \frac{9}{{25}}\overrightarrow {AJ} \).

Do đó \(\overrightarrow {AC} = \frac{{25}}{{16}}\overrightarrow {AI} - \frac{9}{{16}}\overrightarrow {AJ} \)         (2)

Từ (1), (2), suy ra \(\frac{5}{2}\overrightarrow {AB} - \overrightarrow {AC} = \frac{3}{2}\overrightarrow {AJ} \).

Do đó \[\overrightarrow {AJ} = \frac{5}{3}\overrightarrow {AB} - \frac{2}{3}\overrightarrow {AC} \].

Vậy \(\overrightarrow {AB} = \frac{5}{8}\overrightarrow {AI} + \frac{3}{8}\overrightarrow {AJ} \); \(\overrightarrow {AC} = \frac{{25}}{{16}}\overrightarrow {AI} - \frac{9}{{16}}\overrightarrow {AJ} \) và \[\overrightarrow {AJ} = \frac{5}{3}\overrightarrow {AB} - \frac{2}{3}\overrightarrow {AC} \].

b) Gọi H là trung điểm BC. Dựng hình bình hành ABKC.

Ta có G là trọng tâm của tam giác ABC.

Suy ra \(\overrightarrow {AG} = \frac{2}{3}\overrightarrow {AH} = \frac{2}{3}.\frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right)\)

\( = \frac{1}{3}\left( {\frac{5}{8}\overrightarrow {AI} + \frac{3}{8}\overrightarrow {AJ} + \frac{{25}}{{16}}\overrightarrow {AI} - \frac{9}{{16}}\overrightarrow {AJ} } \right)\).

\( = \frac{{35}}{{48}}\overrightarrow {AI} - \frac{1}{{16}}\overrightarrow {AJ} \).

Vậy \(\overrightarrow {AG} = \frac{{35}}{{48}}\overrightarrow {AI} - \frac{1}{{16}}\overrightarrow {AJ} \).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Hàm số đã cho có a = 1 > 0 và \(\frac{{ - b}}{{2a}} = m + 1\) nên hàm số đã cho đồng biến trên khoảng (m + 1; +∞).

Do đó để hàm số đã cho đồng biến trên khoảng (4; 2018) thì (4; 2018) (m + 1; +∞).

m + 1 ≤ 4 m ≤ 3.

Mà m là số nguyên dương.

Suy ra m {1; 2; 3}.

Vậy có 3 giá trị nguyên dương của tham số m thỏa mãn yêu cầu bài toán.

Lời giải

Lời giải

Gọi x là số ha đất trồng ngô, y là số ha đất trồng đậu xanh.

Ta có các điều kiện ràng buộc đối với x, y như sau:

Hiển nhiên x ≥ 0, y ≥ 0.

Diện tích canh tác không vượt quá 8 ha nên ta có x + y ≤ 8.

Số ngày công sử dụng không vượt quá 180 ngày nên 20x + 30y ≤ 180.

2x + 3y ≤ 18.

Từ đó, ta có hệ bất phương trình mô tả các điều kiện ràng buộc là:

\(\left\{ \begin{array}{l}x \ge 0\\y \ge 0\\x + y \le 8\\2x + 3y \le 18\end{array} \right.\,\,\left( * \right)\).

Yêu cầu bài toán Tìm (x; y) thỏa (*) để F(x; y) = 40x + 50y đạt giá trị lớn nhất.

Vẽ và xác định miền nghiệm của (*):

Media VietJack

Ta có:

Miền nghiệm của (*) là tứ giác OABC (kể cả biên).

O(0; 0), A(0; 6), B(6; 2), C(8; 0).

F(O) = 0, F(A) = 300, F(B) = 340, F(C) = 320.

Suy ra maxF(x; y) = F(B) = 340 khi và chỉ khi x = 6, y = 2.

Vậy để thu được nhiều tiền nhất thì bác Năm cần trồng 6 ha ngô và 2 ha đậu xanh.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay