Câu hỏi:
12/07/2024 16,115Cho tam giác ABC. Gọi I là điểm trên cạnh BC sao cho 2CI = 3BI và J là điểm trên BC kéo dài sao cho 5JB = 2JC. Gọi G là trọng tâm tam giác.
a) Biểu diễn \(\overrightarrow {AB} ,\overrightarrow {AC} \) theo hai vectơ \(\overrightarrow {AI} ,\overrightarrow {AJ} \) và biểu diễn \(\overrightarrow {AJ} \) qua \(\overrightarrow {AB} ,\overrightarrow {AC} \).
b) Biểu diễn \(\overrightarrow {AG} \) theo hai vectơ \(\overrightarrow {AI} ,\overrightarrow {AJ} \).
Quảng cáo
Trả lời:
Lời giải
a) Ta có I là điểm trên cạnh BC sao cho 2CI = 3BI.
\( \Rightarrow \frac{{BI}}{{CI}} = \frac{2}{3}\).
\( \Rightarrow \frac{{BI}}{{BC}} = \frac{2}{5}\).
\( \Rightarrow BI = \frac{2}{5}BC\).
Chứng minh tương tự, ta được: \(IC = \frac{3}{5}BC\).
Lại có J là điểm trên BC kéo dài sao cho 5JB = 2JC.
\( \Rightarrow \frac{{JB}}{{IC}} = \frac{2}{5}\).
\( \Rightarrow \frac{{JB}}{{BC}} = \frac{2}{3}\).
\( \Rightarrow JB = \frac{2}{3}BC\) và \(BC = \frac{3}{5}JC\).
Ta có \(\overrightarrow {AB} = \overrightarrow {AI} + \overrightarrow {IB} = \overrightarrow {AI} - \frac{2}{5}\overrightarrow {BC} = \overrightarrow {AI} - \frac{2}{5}.\frac{3}{2}\overrightarrow {JB} = \overrightarrow {AI} - \frac{3}{5}\overrightarrow {JB} \).
\( = \overrightarrow {AI} - \frac{3}{5}\left( {\overrightarrow {JA} + \overrightarrow {AB} } \right) = \overrightarrow {AI} + \frac{3}{5}\overrightarrow {AJ} - \frac{3}{5}\overrightarrow {AB} \).
Suy ra \(\overrightarrow {AB} + \frac{3}{5}\overrightarrow {AB} = \overrightarrow {AI} + \frac{3}{5}\overrightarrow {AJ} \).
Do đó \(\overrightarrow {AB} = \frac{5}{8}\overrightarrow {AI} + \frac{3}{8}\overrightarrow {AJ} \) (1)
Ta có \(\overrightarrow {AC} = \overrightarrow {AI} + \overrightarrow {IC} = \overrightarrow {AI} + \frac{3}{5}\overrightarrow {BC} = \overrightarrow {AI} + \frac{3}{5}.\frac{3}{5}\overrightarrow {JC} = \overrightarrow {AI} + \frac{9}{{25}}\left( {\overrightarrow {JA} + \overrightarrow {AC} } \right)\).
Suy ra \(\overrightarrow {AC} - \frac{9}{{25}}\overrightarrow {AC} = \overrightarrow {AI} - \frac{9}{{25}}\overrightarrow {AJ} \).
Do đó \(\overrightarrow {AC} = \frac{{25}}{{16}}\overrightarrow {AI} - \frac{9}{{16}}\overrightarrow {AJ} \) (2)
Từ (1), (2), suy ra \(\frac{5}{2}\overrightarrow {AB} - \overrightarrow {AC} = \frac{3}{2}\overrightarrow {AJ} \).
Do đó \[\overrightarrow {AJ} = \frac{5}{3}\overrightarrow {AB} - \frac{2}{3}\overrightarrow {AC} \].
Vậy \(\overrightarrow {AB} = \frac{5}{8}\overrightarrow {AI} + \frac{3}{8}\overrightarrow {AJ} \); \(\overrightarrow {AC} = \frac{{25}}{{16}}\overrightarrow {AI} - \frac{9}{{16}}\overrightarrow {AJ} \) và \[\overrightarrow {AJ} = \frac{5}{3}\overrightarrow {AB} - \frac{2}{3}\overrightarrow {AC} \].
b) Gọi H là trung điểm BC. Dựng hình bình hành ABKC.
Ta có G là trọng tâm của tam giác ABC.
Suy ra \(\overrightarrow {AG} = \frac{2}{3}\overrightarrow {AH} = \frac{2}{3}.\frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right)\)
\( = \frac{1}{3}\left( {\frac{5}{8}\overrightarrow {AI} + \frac{3}{8}\overrightarrow {AJ} + \frac{{25}}{{16}}\overrightarrow {AI} - \frac{9}{{16}}\overrightarrow {AJ} } \right)\).
\( = \frac{{35}}{{48}}\overrightarrow {AI} - \frac{1}{{16}}\overrightarrow {AJ} \).
Vậy \(\overrightarrow {AG} = \frac{{35}}{{48}}\overrightarrow {AI} - \frac{1}{{16}}\overrightarrow {AJ} \).Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Hàm số đã cho có a = 1 > 0 và \(\frac{{ - b}}{{2a}} = m + 1\) nên hàm số đã cho đồng biến trên khoảng (m + 1; +∞).
Do đó để hàm số đã cho đồng biến trên khoảng (4; 2018) thì (4; 2018) ⊂ (m + 1; +∞).
⇔ m + 1 ≤ 4 ⇔ m ≤ 3.
Mà m là số nguyên dương.
Suy ra m ∈ {1; 2; 3}.
Vậy có 3 giá trị nguyên dương của tham số m thỏa mãn yêu cầu bài toán.
Lời giải
Lời giải
Gọi x là số ha đất trồng ngô, y là số ha đất trồng đậu xanh.
Ta có các điều kiện ràng buộc đối với x, y như sau:
⦁ Hiển nhiên x ≥ 0, y ≥ 0.
⦁ Diện tích canh tác không vượt quá 8 ha nên ta có x + y ≤ 8.
⦁ Số ngày công sử dụng không vượt quá 180 ngày nên 20x + 30y ≤ 180.
⇔ 2x + 3y ≤ 18.
Từ đó, ta có hệ bất phương trình mô tả các điều kiện ràng buộc là:
\(\left\{ \begin{array}{l}x \ge 0\\y \ge 0\\x + y \le 8\\2x + 3y \le 18\end{array} \right.\,\,\left( * \right)\).
Yêu cầu bài toán ⇔ Tìm (x; y) thỏa (*) để F(x; y) = 40x + 50y đạt giá trị lớn nhất.
Vẽ và xác định miền nghiệm của (*):
Ta có:
⦁ Miền nghiệm của (*) là tứ giác OABC (kể cả biên).
⦁ O(0; 0), A(0; 6), B(6; 2), C(8; 0).
⦁ F(O) = 0, F(A) = 300, F(B) = 340, F(C) = 320.
Suy ra maxF(x; y) = F(B) = 340 khi và chỉ khi x = 6, y = 2.
Vậy để thu được nhiều tiền nhất thì bác Năm cần trồng 6 ha ngô và 2 ha đậu xanh.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
140 câu Bài tập Hàm số mũ và Logarit cơ bản, nâng cao cực hay có lời giải chi tiết (P1)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận