Câu hỏi:

13/07/2024 1,076

Tìm giá trị nhỏ nhất, lớn nhất y = sinx ‒ cosx.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có:

y = sinx cosx

\[ = \sqrt 2 \left( {\frac{1}{{\sqrt 2 }}{\mathop{\rm s}\nolimits} {\rm{inx}} + \frac{1}{{\sqrt 2 }}\cos x} \right)\]

\[ = \sqrt 2 \left( {\cos \frac{\pi }{4}.{\mathop{\rm s}\nolimits} {\rm{inx}} + \sin \frac{\pi }{4}.\cos x} \right)\]

\[ = \sqrt 2 \sin \left( {x + \frac{\pi }{4}} \right)\]

\[\sin \left( {x + \frac{\pi }{4}} \right) \in \left[ { - 1;1} \right]\] \[ \Rightarrow \sqrt 2 \sin \left( {x + \frac{\pi }{4}} \right) \in \left[ { - \sqrt 2 ;\sqrt 2 } \right]\]

Vậy giá trị nhỏ nhất của y là \[ - \sqrt 2 \]; giá trị lớn nhất là \[\sqrt 2 \].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình bình hành ABCD, đường chéo BD. Kẻ AH và CK vuông góc với BD ở H (ảnh 1)

Ta có:

AH BD, CK BD AH // CK (1)

∆ABH và ∆CDK có:

\(\widehat {AHB} = \widehat {CKD}\) (= 90°)

\(\widehat {ABH} = \widehat {CDK}\) (2 góc so le trong)

AB = CD (tính chất hình bình hành)

∆ABH = ∆CDK (cạnh huyền – góc nhọn)

AH = CK (2)

Từ (1), (2) tứ giác AHCK là hình bình hành.      \[\]

Lời giải

Số cách đặt chữ số 0 là 4.

Số cách chọn số vào 4 vị trí còn lại là: \[A_5^4 = 120\].

Số số lập thành là: 4.120 = 480 (số).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP