Câu hỏi:

05/07/2023 767

Từ điểm M nằm ngoài đường tròn (O) kẻ các tiếp tuyến MP và MQ với đường tròn biết tam giác MPQ đều cạnh bằng \[15\sqrt 3 \]cm. Tính đường kính của đường tròn.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Từ điểm M nằm ngoài đường tròn (O) kẻ các tiếp tuyến MP và MQ với đường tròn  (ảnh 1)

Gọi K là trung điểm của PQ \[ \Rightarrow PK = \frac{1}{2}PQ = \frac{{15\sqrt 3 }}{2}\]

Vì MP là tiếp tuyến của đườn tròn (O) OP PM \[ \Rightarrow \widehat {OPM} = {90^{\rm{o}}}\]

∆MPQ đều \[ \Rightarrow \widehat {MPQ} = {60^{\rm{o}}}\]\[ \Rightarrow \widehat {OPQ} = \widehat {OPM} - \widehat {MPQ} = {90^{\rm{o}}} - {60^{\rm{o}}} = {30^{\rm{o}}}\]

Xét tam giác OPK có: \[\cos \widehat {OPQ} = \frac{{PK}}{{OP}}\]

\[ \Rightarrow \cos {30^{\rm{o}}} = \frac{{\frac{{15\sqrt 3 }}{2}}}{{OP}}\] \[ \Rightarrow OP = \frac{{15\sqrt 3 }}{2}:\frac{{\sqrt 3 }}{2} = 15\]

Vậy đường kính của đường tròn là: 15.2 = 30 (cm).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình bình hành ABCD, đường chéo BD. Kẻ AH và CK vuông góc với BD ở H (ảnh 1)

Ta có:

AH BD, CK BD AH // CK (1)

∆ABH và ∆CDK có:

\(\widehat {AHB} = \widehat {CKD}\) (= 90°)

\(\widehat {ABH} = \widehat {CDK}\) (2 góc so le trong)

AB = CD (tính chất hình bình hành)

∆ABH = ∆CDK (cạnh huyền – góc nhọn)

AH = CK (2)

Từ (1), (2) tứ giác AHCK là hình bình hành.      \[\]

Lời giải

Số cách đặt chữ số 0 là 4.

Số cách chọn số vào 4 vị trí còn lại là: \[A_5^4 = 120\].

Số số lập thành là: 4.120 = 480 (số).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP