Câu hỏi:

12/07/2024 211

Tìm GTLN, GTNN của: \[y = \sin 2x + \sqrt 3 {\cos ^2}x + 1\] \[\]

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

\[y = \sin 2x + \sqrt 3 {\cos ^2}x + 1\]

\[ = \sin 2x + \sqrt 3 \left( {\frac{{1 + \cos 2x}}{2}} \right) + 1\]

\[ = sin2x + \frac{{\sqrt 3 }}{2}\cos 2x + 1 + \frac{{\sqrt 3 }}{2}\]

\[ = \frac{{\sqrt 7 }}{2}\left( {\sin 2x.\frac{{2\sqrt 7 }}{7} + \frac{{\sqrt {21} }}{7}\cos 2x} \right) + 1 + \frac{{\sqrt 3 }}{2}\]

\[ = \frac{{\sqrt 7 }}{2}.\sin \left( {2x + a} \right) + 1 + \frac{{\sqrt 3 }}{2}\]

Với \[\cos a = \frac{{2\sqrt 7 }}{7}\]; \[\sin a = \frac{{\sqrt {21} }}{7}\]

\[ \Rightarrow - \frac{{\sqrt 7 }}{2} + 1 + \frac{{\sqrt 3 }}{2} \le y \le \frac{{\sqrt 7 }}{2} + 1 + \frac{{\sqrt 3 }}{2}\]

 Vậy GTNN của y là \[ - \frac{{\sqrt 7 }}{2} + 1 + \frac{{\sqrt 3 }}{2}\], khi sin(2x + a) = –1

\( \Leftrightarrow 2x + a = - \frac{\pi }{2} + k2\pi \left( {k \in \mathbb{Z}} \right)\)\( \Leftrightarrow x = - \frac{a}{2} - \frac{\pi }{4} + k\pi \left( {k \in \mathbb{Z}} \right)\), với \[\cos a = \frac{{2\sqrt 7 }}{7}\]; \[\sin a = \frac{{\sqrt {21} }}{7}\]

 Vậy GTLN của y là \[\frac{{\sqrt 7 }}{2} + 1 + \frac{{\sqrt 3 }}{2}\], khi sin(2x + a) = 1

\( \Leftrightarrow 2x + a = \frac{\pi }{2} + k2\pi \left( {k \in \mathbb{Z}} \right)\)\( \Leftrightarrow x = - \frac{a}{2} + \frac{\pi }{4} + k\pi \left( {k \in \mathbb{Z}} \right)\), với \[\cos a = \frac{{2\sqrt 7 }}{7}\]; \[\sin a = \frac{{\sqrt {21} }}{7}\]

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình bình hành ABCD, đường chéo BD. Kẻ AH và CK vuông góc với BD ở H và ở K. Chứng minh tứ giác AHCK là hình bình hành.

Xem đáp án » 13/07/2024 33,392

Câu 2:

Từ các chữ số của tập hợp {0; 1; 2; 3; 4; 5}, có thể lập được bao nhiêu số tự nhiên có 5 chữ số đôi một khác nhau mà trong đó nhất thiết phải có mặt chữ số 0?

Xem đáp án » 12/07/2024 15,467

Câu 3:

Cho hình chóp S.ABCD có đáy là hình vuông cạnh bằng a, cạnh SA vuông góc với (ABCD) và SA = a. Tính khoảng cách SC và BD.

Xem đáp án » 13/07/2024 6,935

Câu 4:

Từ các chữ số 0; 1; 2; 3; 4; 5; 6; 7; 8; 9, hỏi lập được bao nhiêu số tự nhiên mỗi số có 4 chữ số khác nhau, và trong đó có bao nhiêu số mà chữ số đứng sau lớn hơn chữ số đứng trước.

Xem đáp án » 12/07/2024 5,773

Câu 5:

Có bao nhiêu giá trị nguyên của tham số m để hàm số \[y = \sqrt {5 - m\sin x - (m + 1)\cos x} \] xác định trên ℝ?

Xem đáp án » 13/07/2024 5,764

Câu 6:

Từ các chữ số 1, 2, 3, 4, 5, 6. Có thể lập được bao nhiêu số tự nhiên có 5 chữ số khác nhau và nhất thiết phải có chữ số 1 và 5

Xem đáp án » 12/07/2024 4,216

Câu 7:

Xác định tham số m để hàm số y = f(x) = 3msin4x + cos2x là hàm số chẵn.

Xem đáp án » 13/07/2024 3,897
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay