Câu hỏi:

13/07/2024 754

Cho tam giác ABC có E là trung điểm của AC. Qua E kẻ ED // AB (D thuộc BC), EF // BC (F thuộc AB) cho tam giác ABC có E là trung điểm của AC. Chứng minh rằng tứ giác BDEF là hình bình hành và D là trung điểm của đoạn thẳng BC.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác ABC có E là trung điểm của AC. Qua E kẻ ED // AB (D thuộc BC), EF  (ảnh 1)

Xét ΔABC có: E là trung điểm của ACED // AB

Do đó: D là trung điểm của BC.

Xét ΔABC có: E là trung điểm của AC và EF // BC

Do đó: F là trung điểm của AB.

Xét ΔABC có: F, E lần lượt là trung điểm của AB, AC

Do đó: FE là đường trung bình của ΔBAC.

FE // BD và FE = BD

Suy ra FEDB là hình bình hành.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình bình hành ABCD, đường chéo BD. Kẻ AH và CK vuông góc với BD ở H (ảnh 1)

Ta có:

AH BD, CK BD AH // CK (1)

∆ABH và ∆CDK có:

\(\widehat {AHB} = \widehat {CKD}\) (= 90°)

\(\widehat {ABH} = \widehat {CDK}\) (2 góc so le trong)

AB = CD (tính chất hình bình hành)

∆ABH = ∆CDK (cạnh huyền – góc nhọn)

AH = CK (2)

Từ (1), (2) tứ giác AHCK là hình bình hành.      \[\]

Lời giải

Số cách đặt chữ số 0 là 4.

Số cách chọn số vào 4 vị trí còn lại là: \[A_5^4 = 120\].

Số số lập thành là: 4.120 = 480 (số).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP