Câu hỏi:
13/07/2024 186Cho tam giác ABC vuông tại A. Vẽ ra ngoài tam giác một hình vuông BCDE. Gọi O là giao điểm hai đường chéo của hình vuông. Chứng minh AO là tia phân giác của \[\widehat {BAC}\].
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Do BCDE là hình vuông ⇒ BD ⊥ CE
\[\widehat {BAC} = \widehat {BOC} = {90^{\rm{o}}}\]
⇒ 4 điểm B, A, C, O thuộc cùng 1 đường tròn đường kính BC.
\[ \Rightarrow \widehat {BAO} = \widehat {BCO} = {90^{\rm{o}}}\](cùng chắn cung BO)
Mà \[\widehat {BCO} = {45^{\rm{o}}}\] (BCDE là hình vuông)
\[ \Rightarrow \widehat {BAO} = \widehat {BCO} = {45^{\rm{o}}}\], mà \[\widehat {BAC} = {90^ \circ }\], \[\widehat {BAC} = \widehat {BAO} + \widehat {BOC}\]
⇒ \[\widehat {BAO} = \widehat {BOC} = {45^{\rm{o}}}\].
⇒ AO là tia phân giác của \[\widehat {BAC}\].
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình bình hành ABCD, đường chéo BD. Kẻ AH và CK vuông góc với BD ở H và ở K. Chứng minh tứ giác AHCK là hình bình hành.
Câu 2:
Có bao nhiêu giá trị nguyên của tham số m để hàm số \[y = \sqrt {5 - m\sin x - (m + 1)\cos x} \] xác định trên ℝ?
Câu 3:
Xác định tham số m để hàm số y = f(x) = 3msin4x + cos2x là hàm số chẵn.
Câu 4:
Cho hình chóp S.ABCD có SA vuông góc với đáy, ABCD là hình thoi, góc ABC bằng 60, góc giữa mặt phẳng SBD và ABCD bằng 60°.Khoảng cách từ A đến (SBD) là \[\frac{{a\sqrt 6 }}{4}\]. Tính thể tích khối chóp S.ABCD.
Câu 5:
Chứng minh biểu thức sau luôn lớn hơn 0 với mọi x:
A = x2 + 5x + 9.
Câu 6:
Từ các chữ số của tập hợp {0; 1; 2; 3; 4; 5}, có thể lập được bao nhiêu số tự nhiên có 5 chữ số đôi một khác nhau mà trong đó nhất thiết phải có mặt chữ số 0?
Câu 7:
Tìm tổng tất cả các nghiệm của phương trình sinx = ‒1 trên đoạn bằng [0; 4π].
về câu hỏi!