Câu hỏi:

12/07/2024 1,636

Cho hình thang ABCD vuông tại A và B, AB = AD = a, BC = 2a. Gọi I là trung điểm của BC. Tính độ dài các vectơ:

a) \[\overrightarrow a = \overrightarrow {BA} - \overrightarrow {BD} - \overrightarrow {DC} \];

b) \[\overrightarrow b = \overrightarrow {DB} - \overrightarrow {DA} + \overrightarrow {IC} \].

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình thang ABCD vuông tại A và B, AB = AD = a, BC = 2a. Gọi I là trung điểm  (ảnh 1)

Ta có:

a) \[\left| {\overrightarrow a } \right| = \left| {\overrightarrow {BA} - \overrightarrow {BD} - \overrightarrow {DC} } \right|\]

\[ = \left| {\overrightarrow {DA} - \overrightarrow {DC} } \right|\]\[ = \left| {\overrightarrow {CA} } \right|\]

= CA

\[ = \sqrt {A{B^2} + B{C^2}} \]

\[ = \sqrt {{a^2} + 4{a^2}} = a\sqrt 5 \]

b) \[\left| {\overrightarrow b } \right| = \left| {\overrightarrow {DB} - \overrightarrow {DA} + \overrightarrow {IC} } \right|\]

\[ = \left| {\overrightarrow {AB} + \overrightarrow {IC} } \right|\]

\[ = \left| {\overrightarrow {AB} + \overrightarrow {BI} } \right|\]\[ = \left| {\overrightarrow {AI} } \right|\]

= AI

\[ = \sqrt {A{B^2} + B{I^2}} \]

\[ = \sqrt {{a^2} + {a^2}} = a\sqrt 2 \].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình bình hành ABCD, đường chéo BD. Kẻ AH và CK vuông góc với BD ở H (ảnh 1)

Ta có:

AH BD, CK BD AH // CK (1)

∆ABH và ∆CDK có:

\(\widehat {AHB} = \widehat {CKD}\) (= 90°)

\(\widehat {ABH} = \widehat {CDK}\) (2 góc so le trong)

AB = CD (tính chất hình bình hành)

∆ABH = ∆CDK (cạnh huyền – góc nhọn)

AH = CK (2)

Từ (1), (2) tứ giác AHCK là hình bình hành.      \[\]

Lời giải

Số cách đặt chữ số 0 là 4.

Số cách chọn số vào 4 vị trí còn lại là: \[A_5^4 = 120\].

Số số lập thành là: 4.120 = 480 (số).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP