Câu hỏi:

12/07/2024 1,099

Gọi S là tập hợp tất cả các giá trị nguyên dương của tham số m để bất phương trình x6 + 3x4 − m3x3 + 4x2 − mx + 2 ≥ 0 đúng với mọi x [1; 3]. Tính tổng của tất cả các phần tử thuộc S.

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có:

x6 + 3x4 − m3x3 + 4x2 − mx + 2 ≥ 0

x6 + 3x4 + 4x2 + 2 ≥ (mx)3 + mx

(x6 + 3x4 + 3x2 + 1) + x2 + 1 ≥ (mx)3 + mx

(x2 + 1).3 + (x2 + 1) ≥ (mx).3 + mx ()

Xét hàm số f(t) = t3 + t ta có: f′(t) = 3t2 + 1 > 0 t R  Hàm số f(t) đồng biến trên ℝ.

Khi đó: () x2 + 1 ≥ mx \[ \Leftrightarrow m \le x + \frac{1}{x}\forall x \in \left[ {1;3} \right]\].

Xét hàm số \[g\left( x \right) = x + \frac{1}{x}\], \[x \in \left[ {1;3} \right]\] có: \[{g^'}\left( x \right) = 1 - \frac{1}{{{x^2}}} = \frac{{{x^2} - 1}}{{{x^2}}} \ge 0\], \[\forall x \in \left[ {1;3} \right]\]

\[ \Rightarrow \mathop {\min g\left( x \right)}\limits_{\left[ {1;3} \right]} = g\left( 1 \right) = 2\]

Để \[ \Leftrightarrow m \le x + \frac{1}{x}\mathop {\forall x \in \left[ {1;3} \right]}\limits_{} \] thì \[\mathop {m \le \min g\left( x \right)}\limits_{\left[ {1;3} \right]} \] m ≤ 2

Mà m là số nguyên dương m = 1, m = 2 S = {1; 2}

Vậy tổng các phần tử của S là 1 + 2 = 3.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình bình hành ABCD, đường chéo BD. Kẻ AH và CK vuông góc với BD ở H và ở K. Chứng minh tứ giác AHCK là hình bình hành.

Xem đáp án » 13/07/2024 32,886

Câu 2:

Từ các chữ số của tập hợp {0; 1; 2; 3; 4; 5}, có thể lập được bao nhiêu số tự nhiên có 5 chữ số đôi một khác nhau mà trong đó nhất thiết phải có mặt chữ số 0?

Xem đáp án » 12/07/2024 8,191

Câu 3:

Có bao nhiêu giá trị nguyên của tham số m để hàm số \[y = \sqrt {5 - m\sin x - (m + 1)\cos x} \] xác định trên ℝ?

Xem đáp án » 13/07/2024 5,605

Câu 4:

Xác định tham số m để hàm số y = f(x) = 3msin4x + cos2x là hàm số chẵn.

Xem đáp án » 13/07/2024 3,632

Câu 5:

Từ các chữ số 0; 1; 2; 3; 4; 5; 6; 7; 8; 9, hỏi lập được bao nhiêu số tự nhiên mỗi số có 4 chữ số khác nhau, và trong đó có bao nhiêu số mà chữ số đứng sau lớn hơn chữ số đứng trước.

Xem đáp án » 12/07/2024 3,472

Câu 6:

Từ các chữ số 1, 2, 3, 4, 5, 6. Có thể lập được bao nhiêu số tự nhiên có 5 chữ số khác nhau và nhất thiết phải có chữ số 1 và 5

Xem đáp án » 12/07/2024 3,167

Câu 7:

Cho hình chóp S.ABCD có đáy là hình vuông cạnh bằng a, cạnh SA vuông góc với (ABCD) và SA = a. Tính khoảng cách SC và BD.

Xem đáp án » 13/07/2024 3,124