Câu hỏi:
12/07/2024 990Gọi S là tập hợp tất cả các giá trị nguyên dương của tham số m để bất phương trình x6 + 3x4 − m3x3 + 4x2 − mx + 2 ≥ 0 đúng với mọi x ∈ [1; 3]. Tính tổng của tất cả các phần tử thuộc S.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).
Quảng cáo
Trả lời:
Ta có:
x6 + 3x4 − m3x3 + 4x2 − mx + 2 ≥ 0
⇔ x6 + 3x4 + 4x2 + 2 ≥ (mx)3 + mx
⇔ (x6 + 3x4 + 3x2 + 1) + x2 + 1 ≥ (mx)3 + mx
⇔ (x2 + 1).3 + (x2 + 1) ≥ (mx).3 + mx (∗)
Xét hàm số f(t) = t3 + t ta có: f′(t) = 3t2 + 1 > 0 ∀ t ∈ R ⇒ Hàm số f(t) đồng biến trên ℝ.
Khi đó: (∗) ⇔ x2 + 1 ≥ mx \[ \Leftrightarrow m \le x + \frac{1}{x}\forall x \in \left[ {1;3} \right]\].
Xét hàm số \[g\left( x \right) = x + \frac{1}{x}\], \[x \in \left[ {1;3} \right]\] có: \[{g^'}\left( x \right) = 1 - \frac{1}{{{x^2}}} = \frac{{{x^2} - 1}}{{{x^2}}} \ge 0\], \[\forall x \in \left[ {1;3} \right]\]
\[ \Rightarrow \mathop {\min g\left( x \right)}\limits_{\left[ {1;3} \right]} = g\left( 1 \right) = 2\]
Để \[ \Leftrightarrow m \le x + \frac{1}{x}\mathop {\forall x \in \left[ {1;3} \right]}\limits_{} \] thì \[\mathop {m \le \min g\left( x \right)}\limits_{\left[ {1;3} \right]} \] ⇔ m ≤ 2
Mà m là số nguyên dương ⇒ m = 1, m = 2 ⇒ S = {1; 2}
Vậy tổng các phần tử của S là 1 + 2 = 3.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình bình hành ABCD, đường chéo BD. Kẻ AH và CK vuông góc với BD ở H và ở K. Chứng minh tứ giác AHCK là hình bình hành.
Câu 2:
Có bao nhiêu giá trị nguyên của tham số m để hàm số \[y = \sqrt {5 - m\sin x - (m + 1)\cos x} \] xác định trên ℝ?
Câu 3:
Từ các chữ số của tập hợp {0; 1; 2; 3; 4; 5}, có thể lập được bao nhiêu số tự nhiên có 5 chữ số đôi một khác nhau mà trong đó nhất thiết phải có mặt chữ số 0?
Câu 4:
Xác định tham số m để hàm số y = f(x) = 3msin4x + cos2x là hàm số chẵn.
Câu 5:
Từ các chữ số 0; 1; 2; 3; 4; 5; 6; 7; 8; 9, hỏi lập được bao nhiêu số tự nhiên mỗi số có 4 chữ số khác nhau, và trong đó có bao nhiêu số mà chữ số đứng sau lớn hơn chữ số đứng trước.
Câu 6:
Cho hình chóp S.ABCD có SA vuông góc với đáy, ABCD là hình thoi, góc ABC bằng 60, góc giữa mặt phẳng SBD và ABCD bằng 60°.Khoảng cách từ A đến (SBD) là \[\frac{{a\sqrt 6 }}{4}\]. Tính thể tích khối chóp S.ABCD.
Câu 7:
Cho hình chóp S.ABCD có đáy là hình vuông cạnh bằng a, cạnh SA vuông góc với (ABCD) và SA = a. Tính khoảng cách SC và BD.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
124 câu Trắc nghiệm Ôn tập Toán 12 Chương 3 Hình học có đáp án (Phần 1)
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
về câu hỏi!