Câu hỏi:

13/07/2024 1,958

Cho hình chóp S.ABCD có SA vuông góc với đáy, ABCD là hình thoi, góc ABC bằng 60, góc giữa mặt phẳng SBDABCD bằng 60°.Khoảng cách từ A đến (SBD)\[\frac{{a\sqrt 6 }}{4}\]. Tính thể tích khối chóp S.ABCD.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình chóp S.ABCD có SA vuông góc với đáy, ABCD là hình thoi, góc ABC bằng  (ảnh 1)

Gọi O là tâm hình thoi ABCD.

AC BD tại O.

ABCD là hình thoi AB = AD = BC

Ta có: SA (ABCD) \[\widehat {SAB} = \widehat {SAD}\], AB = AD, cạnh SA chung

∆SAB = ∆SAD SB = SD ∆ SBD cân tại S.

Trung tuyến SO là đường cao

SO BD

Ta có: (SBD) ∩ (ABCD) = BD; SO BD; AO BD

Góc giữa (SBD) và (ABCD) là góc giữa SO và AO, là \[\widehat {SOA}\]

\[ \Rightarrow \widehat {SOA} = {60^{\rm{o}}}\].

Giả sử cạnh hình thoi có độ dài là x.

∆ABC có AB = BC và \[\widehat {ABC} = {60^{\rm{o}}}\] ∆ABC đều AC = x \[ \Rightarrow AO = \frac{x}{2}\]

Xét ∆SAO vuông tại A: \[\tan \widehat {SAO} = \frac{{SA}}{{AO}}\] \[ \Rightarrow SA = AO.\tan \widehat {SAO}\]

\[ \Rightarrow SA = \frac{x}{2}.\tan {60^{\rm{o}}} = \frac{{x\sqrt 3 }}{2}\]

∆SAB = ΔSAC SB = SC ΔSBC cân tại S

Gọi M là trung điểm của BC SM BC

∆ABC đều AM BC và \(AM = \frac{{x\sqrt 3 }}{2}\) BC (SAM)

Kẻ AH SM.

BC AH AH (SBC)

Khoảng cách từ A đến (SBC) là AH \[ \Rightarrow AH = \frac{{a\sqrt 6 }}{4}\]

Xét ∆AHM vuông tại H có:\[\frac{1}{{A{H^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{A{M^2}}}\] (hệ thức lượng trong tam giác vuông)

\[ \Rightarrow \frac{1}{{{{\left( {\frac{{a\sqrt 6 }}{2}} \right)}^2}}} = \frac{1}{{{{\left( {\frac{{x\sqrt 3 }}{2}} \right)}^2}}} + \frac{1}{{{{\left( {\frac{{x\sqrt 3 }}{2}} \right)}^2}}}\]

\[ \Rightarrow \frac{{16}}{{{a^2}.6}} = 2.\frac{4}{{{x^2}.3}}\] \[ \Rightarrow x = a\]

Khi đó \[SA = \frac{{a\sqrt 3 }}{2}\]; \(AM = \frac{{a\sqrt 3 }}{2}\); \(BC = x = a\).

\[ \Rightarrow {V_{S.ABCD}} = \frac{1}{3}.SA.{S_{ABCD}} = \frac{1}{3}.SA.AM.BC = \frac{1}{3}.\frac{{a\sqrt 3 }}{2}.\frac{{a\sqrt 3 }}{2}.a = \frac{{{a^3}}}{4}\] (đơn vị thể tích).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình bình hành ABCD, đường chéo BD. Kẻ AH và CK vuông góc với BD ở H và ở K. Chứng minh tứ giác AHCK là hình bình hành.

Xem đáp án » 13/07/2024 31,394

Câu 2:

Có bao nhiêu giá trị nguyên của tham số m để hàm số \[y = \sqrt {5 - m\sin x - (m + 1)\cos x} \] xác định trên ℝ?

Xem đáp án » 13/07/2024 5,379

Câu 3:

Xác định tham số m để hàm số y = f(x) = 3msin4x + cos2x là hàm số chẵn.

Xem đáp án » 13/07/2024 3,418

Câu 4:

Chứng minh biểu thức sau luôn lớn hơn 0 với mọi x:

A = x2 + 5x + 9.

Xem đáp án » 13/07/2024 1,684

Câu 5:

Tìm số tự nhiên n để: n2021 + n2020 + 1 là số nguyên tố.

Xem đáp án » 13/07/2024 1,662

Câu 6:

Tìm tổng tất cả các nghiệm của phương trình sinx = ‒1 trên đoạn bằng [0; 4π].

Xem đáp án » 12/07/2024 1,606

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store