Câu hỏi:

13/07/2024 27,960 Lưu

Một công ty điện tử sản xuất hai kiểu radio trên hai dây chuyền độc lập. Radio kiểu một sản xuất trên dây chuyền một với công suất 45 radio/ngày radio kiểu hai sản xuất trên dây chuyền 2 với công suất 80 radio/ngày. Để sản xuất một chiếc radio kiểu một cần 12 linh kiện, để sản xuất một chiếc radio kiểu 2 cần 9 linh kiện tiền lãi khi bán một chiếc radio kiểu một là 250 000 đồng tiền lãi thu được khi bán một chiếc Rario kiểu 2 là 180 000 đồng. Hỏi cần sản xuất như thế nào để tiền lãi thu được là nhiều nhất biết rằng số linh kiện có thể sử dụng tối đa trong một ngày là 900.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi số radio kiểu một và kiểu hai mà công ty này sản xuất trong một ngày lần lượt là x, y (x, y N*,chiếc)

Số tiền lãi công ty thu được trong 1 ngày:

f(x, y) = 250x + 180y (nghìn đồng)

Công suất của dây chuyền 1 là 45 radio/ngày và dây chuyền 2 là 80 radio/ngày

\( \Rightarrow \left\{ \begin{array}{l}0 \le x \le 45\\0 \le y \le 80\end{array} \right.\)

Để sản xuất 1 chiếc radio kiểu một cần 12 linh kiện điện tử A và một chiếc radio kiểu hai cần 9 linh kiện này. Số linh kiện này được cung cấp mỗi ngày không quá 900

12x + 9y ≤ 900

Ta có hệ bất phương trình: \(\left\{ \begin{array}{l}0 \le x \le 45\\0 \le y \le 80\\12x + 9y \le 900\end{array} \right.\)

Miền của hệ BPT là phần mặt phẳng đậm nhất trong hình, kể cả biên

Khi đó f(x, y) đạt GTLN khi (x, y) là một trong số các điểm A(45; 0); B(45; 40); C(15; 80); D(0; 80).

Thay vào hàm f(x, y) ta có f(x, y) đạt GTLN bằng 18 450 000 đồng khi (x, y) = (45, 40).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Với 3 loại quà khác loại ta chia được thành 3 nhóm tương ứng như sau:

Nhóm (1) gồm 1 áo và 1 sữa 

Nhóm (2) gồm 1 sữa và 1 cặp

Nhóm (3) gồm 1 cặp và 1 áo

Gọi x,y,z lần lượt là số học sinh nhận các suất quà thuộc nhóm (1); (2); (3) 

Ta có hệ phương trình:

\(\left\{ \begin{array}{l}x + y + z = 10\\x + z = 7\\x + y = 9\\y + z = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 6\\y = 3\\z = 1\end{array} \right.\)

Vậy số cách chia 10 suất quà này cho 10 học sinh là \(C_{10}^6.C_4^3.C_1^1\)

Để Việt và Nam có các phần thưởng giống nhau có các TH sau:

TH1: Việt và Nam nhận suất quà nhóm (1) có \(C_8^4.C_4^3.C_1^1\)

TH2: Việt và Nam nhận suất quà nhóm (2) có \(C_8^6.C_2^1.C_1^1\)

Tổng số cách để Việt và Nam có suất quà giống nhau là: \(C_8^4.C_4^3.C_1^1 + C_8^6.C_2^1.C_1^1\)

Vậy xác suất cần tìm là: \(P = \frac{{C_8^4.C_4^3.C_1^1 + C_8^6.C_2^1.C_1^1}}{{C_{10}^6.C_4^3.C_1^1}} = \frac{2}{5}\)

Lời giải

Gọi x và y lần lượt là số máy giặt và tủ lạnh anh bán được (x ; y ℕ)

Số tiền thu được: 0,6x + 1,3y (triệu đồng)

Theo bài ra, ta có bất phương trình:

0,6x + 1,3y ≥ 10 0,6x + 1,3y – 10 ≥ 0

Vẽ đường thẳng (d): 0,6x + 1,3y – 10 = 0 trên mặt phẳng toạ độ Oxy

Thấy điểm O(0; 0) không thuộc BPT (1) nên miền nghiệm BPT là phần mặt phẳng không chứa O, kể cả đường thẳng (d).

Vậy để nhận được từ 10 triệu đồng trở lên tiền hoa hồng thì anh An cần bán x máy giặt và y tủ lạnh sao cho (x, y) là điểm

Anh An là nhân viên bán hàng tại siêu thị điện máy. Anh An kiếm được một khoản  (ảnh 1)

phần mặt phẳng không chứa điểm O, kể cả đường thẳng (d).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP