Câu hỏi:
13/07/2024 12,452Cho hình chóp tứ giác S.ABCD và lấy một điểm E thuộc cạnh SA của hình chóp (E khác S, A). Trong mặt phẳng (ABCD) vẽ một đường thẳng d cắt các cạnh CB, CD lần lượt tại M, N và cắt các tia AB, AD lần lượt tại P, Q.
a) Xác định giao điểm của mp(E, d) với các cạnh SB, SD của hình chóp.
b) Xác định giao tuyến của mp(E, d) với các mặt của hình chóp.
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Lời giải:
a) +) Vì E thuộc cạnh SA nên E thuộc mặt phẳng (SAB). Vì P thuộc đường thẳng AB nên P thuộc mặt phẳng (SAB). Như vậy, các điểm S, A, B, E, P cùng thuộc mặt phẳng (SAB).
Trong tam giác SAB, đường thẳng EP cắt cạnh SB tại một điểm H. Do P thuộc đường thẳng d nên EP nằm trong mp(E, d) và H thuộc EP, do đó H thuộc mp(E, d). Vậy H là giao điểm của đường thẳng SB và mp(E, d).
+) Vì E thuộc cạnh SA nên E thuộc mặt phẳng (SAD). Vì Q thuộc đường thẳng AD nên Q thuộc mặt phẳng (SAD). Như vậy, các điểm S, A, D, E, Q cùng thuộc mặt phẳng (SAD).
Trong tam giác SAD, đường thẳng EQ cắt cạnh SD tại một điểm I. Do Q thuộc đường thẳng d nên EQ nằm trong mp(E, d) và I thuộc EQ, do đó I thuộc mp(E, d). Vậy I là giao điểm của đường thẳng SD và mp(E, d).
b)
+) Đường thẳng d cắt các cạnh CB, CD lần lượt tại M, N, do đó M, N thuộc d, mà d nằm trong mp(E, d) nên đường thẳng MN cũng nằm trong mp(E, d). Ta lại có, M thuộc CB nằm trong mặt phẳng (ABCD) nên M thuộc mặt phẳng (ABCD), tương tự N thuộc CD nằm trong mặt phẳng (ABCD) nên N thuộc mặt phẳng (ABCD), do đó đường thẳng MN nằm trong mặt phẳng (ABCD). Vậy MN là giao tuyến của hai mặt phẳng (ABCD) và mp(E, d).
+) Vì H thuộc SB nằm trong mặt phẳng (SAB) nên H thuộc mặt phẳng (SAB), lại có E thuộc mặt phẳng (SAB), do đó EH nằm trong mặt phẳng (SAB). Vì E thuộc mp(E, d) và H thuộc mp(E, d) nên EH nằm trong mp(E, d). Vậy EH là giao tuyến của hai mặt phẳng (SAB) và mp(E, d).
+) Vì I thuộc SD nằm trong mặt phẳng (SAD) nên I thuộc mặt phẳng (SAD), lại có E thuộc mặt phẳng (SAD), do đó EI nằm trong mặt phẳng (SAD). Vì E thuộc mp(E, d) và I thuộc mp(E, d) nên EI nằm trong mp(E, d). Vậy EI là giao tuyến của hai mặt phẳng (SAD) và mp(E, d).
+) Vì H thuộc SB nên H thuộc mặt phẳng (SBC), vì M thuộc BC nên M thuộc mặt phẳng (SBC), do đó HM nằm trong mặt phẳng (SBC). Lại có M thuộc d nên M thuộc mp(E, d) và H thuộc mp(E, d) nên HM nằm trong mp(E, d). Vậy HM là giao tuyến của hai mặt phẳng (SBC) và mp(E, d).
+) Vì I thuộc SD nên I thuộc mặt phẳng (SCD), vì N thuộc CD nên N thuộc mặt phẳng (SCD), do đó IN nằm trong mặt phẳng (SCD). Lại có N thuộc d nên N thuộc mp(E, d) và I thuộc mp(E, d) nên IN nằm trong mp(E, d). Vậy IN là giao tuyến của hai mặt phẳng (SCD) và mp(E, d).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC và điểm S không thuộc mặt phẳng (ABC). Lấy D, E là các điểm lần lượt thuộc cạnh SA, SB và D, E khác S.
a) Đường thẳng DE có nằm trong mặt phẳng (SAB) không?
b) Giả sử DE cắt AB tại F. Chứng minh rằng F là điểm chung của hai mặt phẳng (SAB) và (CDE).
Câu 2:
Câu 3:
Cho hình tứ diện ABCD. Trên các cạnh AC, BC, BD lần lượt lấy các điểm M, N, P sao cho AM = CM, BN = CN, BP = 2DP.
a) Xác định giao điểm của đường thẳng CD và mặt phẳng (MNP).
b) Xác định giao tuyến của hai mặt phẳng (ACD) và (MNP).
Câu 4:
Trong không gian, cho hai đường thẳng a, b và mặt phẳng (P). Những mệnh đề nào sau đây là đúng?
a) Nếu a chứa một điểm nằm trong (P) thì a nằm trong (P).
b) Nếu a chứa hai điểm phân biệt thuộc (P) thì a nằm trong (P).
c) Nếu a và b cùng nằm trong (P) thì giao điểm (nếu có) của a và b cũng nằm trong (P).
d) Nếu a nằm trong (P) và a cắt b thì b nằm trong (P).
Câu 5:
Câu 6:
về câu hỏi!