Câu hỏi:
11/07/2023 657Cho phép đối xứng trục d biến M thành M', N thành N'. Xét hệ trục tọa độ Oxy sao cho trục Oy trùng với d (H.1.16a). Giả sử M có tọa độ là (x1; y1), N có tọa độ là (x2; y2).
a) Hãy cho biết tọa độ của M', N'.
b) Tính MN2, M'N'2 theo tọa độ của các điểm tương ứng.
c) So sánh độ dài các đoạn thẳng MN, M'N'.
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Lời giải:
a) M' và N' lần lượt là ảnh của M và N qua phép đối xứng trục d (trục Oy).
Do đó M'(– x1; y1) và N'(– x2; y2).
b) Ta có: \(M{N^2} = {\left( {\sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} } \right)^2}\)= (x2 – x1)2 + (y2 – y1)2
\(M'N{'^2} = {\left( {\sqrt {{{\left( { - {x_2} - \left( { - {x_1}} \right)} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} } \right)^2}\)= (– x2 + x1)2 + (y2 – y1)2.
c) Ta có: (x2 – x1)2 = (x1 – x2)2 = (– x2 + x1)2.
Do đó (x2 – x1)2 + (y2 – y1)2 = (– x2 + x1)2 + (y2 – y1)2 hay MN2 = M'N'2.
Suy ra MN = M'N'.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Câu 4:
Câu 5:
Câu 6:
Câu 7:
Xét mặt phẳng tọa độ Oxy (H.1.15). Trong các khẳng định sau, chọn các khẳng định đúng.
a) Phép đối xứng trục Ox biến mỗi điểm M(x; y) thành điểm có tọa độ (x; – y).
b) Phép đối xứng trục Oy biến mỗi điểm M(x; y) thành điểm có tọa độ (– x; y).
c) Phép đối xứng trục Ox biến A(1; 2) thành điểm A'(– 1; – 2).
10 Bài tập Tính xác suất của biến cố hợp của hai biến cố bất kì bằng cách sử dụng công thức cộng xác suất và phương pháp tổ hợp (có lời giải)
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
10 Bài tập Vận dụng đạo hàm cấp hai để giải quyết một số bài toán thực tiễn (có lời giải)
20 câu trắc nghiệm Toán 11 Kết nối tri thức Mẫu số liệu ghép nhóm có đáp án
38 câu trắc nghiệm Toán 11 Kết nối tri thức Lôgarit có đáp án
10 Bài tập Bài toán thực tiễn liên quan đến thể tích (có lời giải)
10 Bài tập Biến cố hợp. Biến cố giao (có lời giải)
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
về câu hỏi!