Câu hỏi:
12/07/2024 1,580
Với giá trị nào của n thì đồ thị đầy đủ Kn có một chu trình Hamilton? Có một đường đi Hamilton?
Quảng cáo
Trả lời:
Lời giải:
Đồ thị đầy đủ Kn có n ≥ 2, n ∈ ℕ.
+ Với n = 2 ta có K2 không có chu trình Hamilton, nhưng có đường đi Hamilton (đi từ đỉnh này qua đỉnh còn lại).
+ Với n ≥ 3, n ∈ ℕ.
Đồ thị đầy đủ Kn là một đơn đồ thị có n đỉnh và mỗi đỉnh có bậc là n – 1.
- Sử dụng định lí Ore, ta thấy Kn có một chu trình Hamilton khi mỗi cặp đỉnh không kề nhau đều có tổng bậc không nhỏ hơn n, tức là (n – 1) + (n – 1) ≥ n, tương đương với n ≥ 2, kết hợp với điều kiện suy ra n ≥ 3, n ∈ ℕ. (Ta cũng có thể sử dụng định lí Dirac để tìm điều kiện của n)
- Sử dụng Định lí 4 (suy ra từ định lí Dirac), ta thấy Kn có một đường đi Hamilton khi mỗi đỉnh có bậc không nhỏ hơn \(\frac{{n - 1}}{2}\), tức là n – 1 ≥ \(\frac{{n - 1}}{2}\), tương đương với n ≥ 1, kết hợp với điều kiện suy ra n ≥ 3, n ∈ ℕ.
Vậy với n ≥ 3, n ∈ ℕ thì đồ thị đầy đủ Kn có một chu trình Hamilton và với n ≥ 2, n ∈ ℕ thì đồ thị đầy đủ Kn có một đường đi Hamilton.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải:
+) Đồ thị Hình 2.24 a) có các đỉnh đều có bậc là 3 nên theo định lí Euler đồ thị này không có chu trình Euler.
Lại có đồ thị a) có 4 đỉnh, tổng số bậc của hai đỉnh không kề nhau luôn không nhỏ hơn 4 nên theo định lí Ore, đồ thị a) có một chu trình Hamilton.
Một chu trình Hamiltol của đồ thị a) là ABCDA.
+) Đồ thị Hình 2.24 b) liên thông và có các đỉnh đều có bậc chẵn (ở đây là bậc 4) nên theo định lí Euler, đồ thị này có một chu trình Euler. Một chu trình Euler của đồ thị này là ABCDEADBECA.
Lại có đồ thị b) có 5 đỉnh, tổng số bậc của hai đỉnh không kề nhau luôn không nhỏ hơn 5 nên theo định lí Ore, đồ thị b) có một chu trình Hamilton.
Một chu trình Halminton của đồ thị này là ABCDEA.
+) Đồ thị Hình 2.24 c) có các đỉnh đều có bậc là 3 nên theo định lí Euler đồ thị này không có chu trình Euler.
Lại có đồ thị c) có 8 đỉnh, mặc dù đồ thị này không thỏa mãn cả 2 định lí Ore và Dirac nhưng đồ thị vẫn có một chu trình Hamilton.
Một chu trình Hamiltol của đồ thị c) là ABCDHGFEA.
+) Đồ thị Hình 2.24 d) có đỉnh A và B là đỉnh bậc 3, nên theo định lí Euler đồ thị này không có chu trình Euler. Đồ thị d) này cũng không có chu trình Hamilton.
Lời giải
Lời giải:
- Đồ thị Hình 2.19a có đường đi Euler từ A đến B vì đồ thị này liên thông và các đỉnh A, B có bậc 3 (bậc lẻ), còn các đỉnh C, D, E đều có bậc 2 (bậc chẵn). Một đường đi Euler của đồ thị này là ACBDAEB.
- Đồ thị Hình 2.19b không có đường đi Euler vì đồ thị này có bốn đỉnh bậc lẻ (ở đây là bậc bằng 3).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.