Câu hỏi:

12/07/2024 1,369

Chứng minh rằng nếu G là một đơn đồ thị có ít nhất hai đỉnh thì G có ít nhất hai đỉnh cùng bậc.

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải:

Giả sử G là một đơn đồ thị có n đỉnh (n ≥ 2).

Vì G là đơn đồ thị nên mỗi đỉnh của G không có khuyên và chỉ có thể nối với các đỉnh khác không quá một cạnh, nghĩa là mỗi đỉnh của G có bậc tối đa là (n – 1) (*).

Giả sử bậc của các đỉnh của G đều khác nhau. Khi đó bậc của n đỉnh của G lần lượt là 0, 1, ..., (n – 1), nghĩa là G phải có đỉnh bậc 0.

Do G có đỉnh bậc 0 nên các đỉnh khác của G có bậc tối đa là (n – 2) (mâu thuẫn (*)).

Vậy có ít nhất 2 đỉnh của G có cùng bậc.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Vẽ đồ thị G = (V, E) với các đỉnh và các cạnh như sau:

V = {1; 2; 3; 4; 5; 6; 7; 8} và E = {12; 13; 23; 34; 35; 67; 68; 78}.

Đồ thị này có phải là đơn đồ thị không? Có phải là đồ thị đầy đủ không?

Xem đáp án » 13/07/2024 2,274

Câu 2:

Giải bài toán người đưa thư với đồ thị có trọng số trên Hình 2.42.
Media VietJack

Xem đáp án » 13/07/2024 1,889

Câu 3:

Viết tập hợp các đỉnh và tập hợp các cạnh của mỗi đồ thị sau:
Media VietJack

Xem đáp án » 13/07/2024 1,457

Câu 4:

Tìm một chu trình Euler trong đồ thị trên Hình 2.40.
Media VietJack

Xem đáp án » 13/07/2024 931

Câu 5:

Giải bài toán người đưa thư với đồ thị có trọng số trên Hình 2.41.
Media VietJack

Xem đáp án » 12/07/2024 854

Câu 6:

Kiểm tra xem các điều kiện của định lí Ore có thỏa mãn với các đồ thị trên Hình 2.39 không.
Media VietJack

Xem đáp án » 11/07/2023 670

Bình luận


Bình luận
Vietjack official store