Câu hỏi:

11/07/2023 1,783

Kiểm tra xem các điều kiện của định lí Ore có thỏa mãn với các đồ thị trên Hình 2.39 không.
Media VietJack

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải:

Ta thấy hai đồ thị ở Hình 2.39 đều là đơn đồ thị và mỗi đồ thị đều có số đỉnh lớn hơn 3.

+) Đối với Hình 2.39 a), đặt tên các đỉnh như hình vẽ:

Media VietJack

Đồ thị này có 5 đỉnh, các đỉnh đều có bậc là 3, trừ đỉnh A có bậc là 4 nên mỗi cặp đỉnh không kề nhau có tổng bậc nhỏ nhất là 6, mà 6 > 5, do đó đồ thị này thỏa mãn định lí Ore. Vậy đồ thị Hình 2.39 a) có một chu trình Hamilton.

+) Đối với Hình 2.39 a), đặt tên các đỉnh như hình vẽ:

Media VietJack

Đồ thị này có 5 đỉnh, đỉnh E và đỉnh B đều có bậc là 3, các đỉnh còn lại đều có bậc là 2 nên mỗi cặp đỉnh không kề nhau có tổng số bậc nhỏ nhất là 4 (chẳng hạn đỉnh A và đỉnh D), do đó đồ thị này không thỏa mãn định lí Ore. Tuy nhiên thì đồ thị này vẫn có chu trình Hamilton, một chu trình Hamilton của đồ thị là ABCDEA.

Do đó, ta khẳng định lại định lí Ore chỉ là một điều kiện đủ cho sự tồn tại của chu trình Hamilton.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải:

Đồ thị Hình 2.42 chỉ có hai đỉnh bậc lẻ là D và E nên ta có thể tìm được một đường đi Euler từ D đến E (đường đi này đi qua mỗi cạnh đúng một lần).

Một đường đi Euler từ D đến E là DBACDEBCE và tổng độ dài của nó là

2 + 4 + 4 + 2 + 6 + 3 + 5 + 1 = 27.

Để quay trở lại điểm xuất phát và có đường đi ngắn nhất, ta cần tìm một đường đi ngắn nhất từ E đến D theo thuật toán gắn nhãn vĩnh viễn.

Đường đi ngắn nhất từ E đến D là ECD và có độ dài là 1 + 2 = 3.

Vậy một chu trình cần tìm là DBACDEBCECD và có độ dài là 27 + 3 = 30.

Lời giải

Lời giải:

Media VietJack

Ta vẽ được đồ thị G như hình trên.

Đồ thị G này không có khuyên và hai đỉnh chỉ được nối với nhau bằng nhiều nhất một cạnh nên là một đơn đồ thị.

Đồ thị G không phải đồ thị đầy đủ vì không phải tất cả các cặp đỉnh của nó đều được nối với nhau bằng một cạnh.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP