Câu hỏi:

12/07/2023 1,428

Cho biểu thức:

\(T = \frac{{{x^3}}}{{{x^2} - 4}} - \frac{x}{{x - 2}} - \frac{2}{{x + 2}}\).

a) Viết điều kiện xác định của biểu thức T.

b) Tìm giá trị của x để T = 0.

c) Tìm giá trị nguyên của x để T nhận giá trị dương.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

a) Ta có: x2 ‒ 4 = x2 ‒ 22 = (x ‒ 2)(x + 2) nên điều kiện xác định của biểu thức \(T\):

 x ‒ 2 ≠ 0; x + 2 ≠ 0 hay x ≠ 2; x ≠ ‒2.

b) Ta có: \(T = \frac{{{x^3}}}{{{x^2} - 4}} - \frac{x}{{x - 2}} - \frac{2}{{x + 2}}\)

\(\; = \frac{{{x^3}}}{{\left( {x - 2} \right)\left( {x + 2} \right)}} - \frac{{x\left( {x + 2} \right)}}{{\left( {x - 2} \right)\left( {x + 2} \right)}} - \frac{{2\left( {x - 2} \right)}}{{\left( {x - 2} \right)\left( {x + 2} \right)}}\)

\(\; = \frac{{{x^3} - {x^2} - 2x - 2x + 4}}{{\left( {x - 2} \right)\left( {x + 2} \right)}} = \frac{{{x^3} - {x^2} - 4x + 4}}{{\left( {x - 2} \right)\left( {x + 2} \right)}}\)

\(\; = \frac{{\left( {{x^3} - 4x} \right) - \left( {{x^2} - 4} \right)}}{{{x^2} - 4}} = \frac{{x\left( {{x^2} - 4} \right) - \left( {{x^2} - 4} \right)}}{{{x^2} - 4}}\)

\(\; = \frac{{\left( {x - 1} \right)\left( {{x^2} - 4} \right)}}{{{x^2} - 4}} = x - 1\)

Suy ra T = 0 khi x ‒ 1 = 0 hay x = 1 (thoả mãn điều kiện xác định).

Vậy x = 1 thì T = 0.

c) Để T > 0 thì x ‒ 1 > 0 hay x > 1.

Kết hợp với x là số nguyên và điều kiện xác định x ≠ 2; x ≠ ‒2, suy ra x {3; 4; 5;...}.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Rút gọn rồi tính giá trị biểu thức:

a) \(A = x + 1 - \frac{{{x^2} - 4}}{{x - 1}}\) tại x = –4;

b) \(B = \frac{1}{{5 - x}} - \frac{{{x^2} + 5x}}{{{x^2} - 25}}\) tại x = 99;

c*) \(C = \frac{1}{{x - 1}} - \frac{{2x}}{{{x^3} - {x^2} + x - 1}}\) tại x = 0,7;

d*) \(D = \frac{1}{{x\left( {x + 1} \right)}} + \frac{1}{{\left( {x + 1} \right)\left( {x + 2} \right)}} + \frac{1}{{x + 2}}\) tại \(x = \frac{1}{{23}}\).

Xem đáp án » 13/07/2024 3,401

Câu 2:

Một đội xe dự định dùng một số xe cùng loại để chở 120 tấn hàng gửi tặng đồng bào gặp thiên tai. Lúc sắp khởi hành, đội được bổ sung 5 xe cùng loại nữa. Biết khối lượng hàng mà mỗi xe phải chở là như nhau. Gọi x là số xe mà đội xe dự định dùng (x ℕ*). Viết phân thức biểu thị theo x:

a) Khối lượng hàng mà mỗi xe phải chở theo dự định;

b) Khối lượng hàng mà mỗi xe đã chở theo thực tế;

c) Hiệu giữa khối lượng hàng mà mỗi xe đã chở theo dự định và khối lượng hàng mà mỗi xe phải chở theo thực tế.

Xem đáp án » 13/07/2024 947

Câu 3:

Thực hiện phép tính:

a) \(\frac{{x + 2y}}{a} + \frac{{x - 2y}}{a}\) với a là một số khác 0;

b) \(\frac{x}{{x - 1}} + \frac{1}{{1 - x}}\);

c) \(\frac{{{x^2} + 2}}{{{x^3} - 1}} + \frac{2}{{{x^2} + x + 1}} + \frac{1}{{1 - x}}\);

d) \(x + \frac{1}{{x + 1}} - 1\).

Xem đáp án » 12/07/2023 929

Câu 4:

Một tàu tuần tra đi ngược dòng 60 km, sau đó tàu đi xuôi dòng 48 km, trên cùng một dòng sông. Biết tốc độ của dòng nước là 2 km/h. Gọi x (km/h) là tốc độ của tàu tuần tra (x > 2). Viết phân thức biểu thị theo x:

a) Thời gian tàu tuần tra đi ngược dòng;

b) Thời gian tàu tuần tra đi xuôi dòng;

c) Hiệu giữa thời gian tàu tuần tra đi ngược dòng và thời gian tàu tuần tra đi xuôi dòng.

Xem đáp án » 12/07/2023 381

Bình luận


Bình luận

Phuong Nguyen
20:29 - 13/02/2024

H

Ảnh đính kèm
Đăng ký gói thi VIP

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store